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Abstract

This study investigates the application of the Elzaki Projected Differential Transform Method (EPDTM) to fractional-
order nonlinear Korteweg-de Vries (KdV) equations, which describe various nonlinear wave phenomena in physics
and engineering. The method effectively addresses both linear and nonlinear operators and fractional derivatives.
Through two illustrative examples, the method accurately captures the dynamics of fractional-order wave systems and
achieves results in excellent agreement with exact solutions. The findings demonstrate the method’s precision, fast
convergence, and computational efficiency, underscoring EPDTM's potential as a robust tool for solving nonlinear
partial differential equations with fractional dynamics.

Keywords: Fractional Korteweg-de Vries equations, Elzaki transform, Projected Differential Transform Method,
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INTRODUCTION

The Korteweg-de Vries (KdV) equation is a fundamental mathematical model used to describe the
behavior of weakly nonlinear long waves in various fields of physics and engineering. Its significance lies
in its ability to capture the intricate balance between weak nonlinearity and weak dispersion, which governs
wave evolution. The equation, named after Diederik Korteweg and Gustav de Vries, was introduced in their
seminal 1895 paper, where they demonstrated its applicability to small-amplitude long waves on the free
surface of water. Initially derived by Joseph Boussinesq in 1877, the KdV equation has since found
applications far beyond its original context of shallow-water waves in canals. It plays a crucial role in
explaining phenomena such as shock waves, traveling waves, and solitons in diverse areas including fluid
dynamics, aerodynamics, and continuum mechanics [1-10]. The equation models processes like shock wave
formation, turbulence, boundary layer behavior, and mass transport, making it an indispensable tool in
theoretical and applied research. One of the most remarkable properties of the KdV equation is its exact
solvability. This property was first highlighted by Gardner et al. in 1967, who showed that the KdV equation
could be solved exactly as an initial-value problem with arbitrary initial data in a suitable function space.
This discovery marked a revolution in the study of nonlinear partial differential equations, attracting
significant scholarly attention. Notably, Zakharov and Faddeev demonstrated in 1971 that the KdV equation
exemplifies an infinite-dimensional Hamiltonian system that is completely integrable [11-15]. The exact
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solutions of the KdV equation, often obtained using the inverse scattering transform, include solitons—
stable, localized wave packets that maintain their shape while traveling at constant speeds. These solutions
have made the KdV equation a prototypical example in the study of exactly solvable models in nonlinear
dynamics. The mathematical richness and the intriguing physical properties of the KdV equation continue
to inspire active research [15-20].

Fractional calculus (FC) extends the concept of traditional calculus by allowing derivatives and
integrals to be of non-integer (fractional) order. This extension proves to be particularly effective in
modeling complex engineering and physical systems where standard integer-order differential equations
fall short. Unlike traditional models, fractional calculus (FC) offers a more precise representation of the
dynamics involved in diverse phenomena spanning multiple disciplines. These include chemistry,
economics, electrical engineering, control theory, groundwater issues, mechanics, signal and image
processing, and biological sciences. In recent years, fractional differential equations have become
instrumental in the study of nonlinear equations and their traveling-wave solutions. These solutions are
essential for understanding nonlinear physical processes, which often involve intricate interactions and
evolutions of waves [8, 10, 20-25]. The Korteweg-de Vries (KdV) equation, a cornerstone in the analysis
of nonlinear wave phenomena, benefits significantly from the application of fractional calculus. By
incorporating fractional derivatives, the KdV equation can model a broader spectrum of physical
phenomena, providing a more comprehensive framework for studying the interaction and evolution of
nonlinear waves. The application of fractional calculus to the KdV equation enhances its capability to
describe various physical processes more accurately. This approach is particularly useful in situations where
traditional models with integer-order derivatives are inadequate. As a result, fractional calculus has emerged
as a powerful tool in advancing our understanding of complex systems governed by nonlinear dynamics.
Through the integration of fractional calculus, researchers can develop more robust and versatile models of
the KdV equation. These models not only improve our theoretical understanding but also have practical
implications in fields ranging from fluid dynamics to quantum mechanics. The ongoing exploration of
fractional-order KdV equations continues to reveal new insights and applications, underscoring the
importance of this mathematical framework in modern scientific research [26-30].

The fractional-order coupled Korteweg-de Vries (KdV) equations extend the classical KdV
framework by incorporating fractional derivatives, which allows for a more nuanced modeling of complex
wave phenomena. These equations are defined as follows:
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where Cand 9 are constants, and & denotes the parameter that characterizes the order of the fractional
derivatives of “®>€) and V(V”G), respectively. The functions u.0) gng v(v.0) represent the
fundamental variables of space and time, and are considered to vanish for ¥ < 0 and <0 When
c=d=1 , this formulation simplifies to the traditional coupled Korteweg-de Vries (KdV) equations.

0“u 0%
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In the equations above 00" and 00" denote the fractional derivatives of order @ . These
derivatives are generalizations of the standard integer-order derivatives, providing a powerful tool to
describe memory and hereditary properties inherent in various physical processes. Fractional derivatives
are particularly effective in capturing the complex dynamics of systems where the influence of past states
decays over time, which is a common characteristic in many natural and engineered systems. The constants
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Cand @ play a crucial role in determining the characteristics of the wave propagation and interaction
described by the equations. By adjusting these constants, one can model different physical scenarios and

behaviors. The parameter o , which lies between 0 and 1, indicates the order of the fractional derivative.
This parameter provides an additional degree of freedom in the model, allowing for a more flexible and

accurate representation of the system's dynamics. The functions u(.0) and V(¥-0) are the primary
variables representing the wave phenomena in space and time. These functions are assumed to be zero for

negative values of Y and ¢ , implying that the waves do not exist before the origin in space and time. This
consideration is essential for ensuring the physical relevance of the solutions, as it aligns with the causality

principle, where effects follow causes. When the constants Cand 9 are set to 1, the fractional-order
coupled KdV equations simplify to the classical coupled KdV equations. This reduction highlights the
fractional-order equations' generality, encompassing the classical case as a specific instance. The classical
coupled KdV equations are well-studied and known for describing the interaction of nonlinear waves,
solitons, and other complex wave structures [1-5, 30-32].

Over the years, various researchers have proposed and developed numerous methods to solve the
Korteweg-de Vries (KdV) equations, which model a wide range of nonlinear wave phenomena. Here, we
review significant contributions to the solution of these equations: Maturi (2012) utilized the Adomian
decomposition method to solve the Generalized Hirota—Satsuma coupled KdV equations [31]. By applying
the differential transform technique, Gokdogan et al [36] studied approximate solutions for coupled KdV
equations. This method transforms the differential equations into a series of algebraic equations, which can
be solved iteratively to obtain approximate solutions. The analysis of nonlinear KdV equations using the
Homotopy Analysis Method (HAM) was suggested by Jafari and Firoozjaee (2010) [39]. Lu et al. (2020)
[40] employed fractional calculus by He's method to compute numerical solutions for a system of coupled
nonlinear fractional Korteweg-de Vries (KdV) equations.

The Elzaki Projected Differential Transform Method (EPDTM) is proposed as a novel approach to
solving fractional-order coupled KdV equations due to several compelling reasons. The EPDTM is designed
to efficiently handle the nonlinearity and fractional nature of the equations. Traditional methods often
struggle with the complexities introduced by fractional derivatives, but EPDTM can seamlessly incorporate
these into the solution process. The EPDTM is known for its accuracy and rapid convergence, which are
crucial for solving complex coupled equations. By projecting the differential transform method through the
Elzaki transform, this method reduces computational errors and enhances solution precision. One of the
primary advantages of the EPDTM is its ability to simplify the computational process. By transforming the
problem into a series of algebraic equations, it reduces the difficulty associated with solving the original
fractional differential equations directly. The EPDTM can be applied to a wide range of initial and boundary
value problems, making it a versatile tool for various applications. Its adaptability to different types of
fractional differential equations makes it particularly suitable for the fractional-order coupled KdV
equations. The method provides enhanced analytical capabilities, allowing for a deeper understanding of
the underlying physical phenomena. By obtaining more accurate and detailed solutions, researchers can
better analyze the wave interactions and dynamics described by the fractional-order coupled KdV equations.
The coupled nature of the fractional-order KdV equations necessitates a method that can effectively address
the interaction between multiple variables. The EPDTM is well-suited for coupled systems, providing a
robust framework for analyzing the interplay between the fundamental functions of space and time. By
employing the Elzaki Projected Differential Transform Method, we aim to achieve a more comprehensive
and precise analysis of the fractional-order coupled KdV equations, advancing our understanding of
nonlinear wave phenomena and enhancing the applicability of these models in various scientific and
engineering fields [2-7, 38-40].

Despite their wide use, many existing methods for solving fractional differential equations—such
as the Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), and Variational
Iteration Method (VIM)—encounter significant computational limitations. These approaches often rely on
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recursive correction steps, linearization, or perturbative assumptions, which can be time-consuming and
difficult to implement for highly nonlinear or stiff systems. Moreover, the convergence of the resulting
series may be slow or require many terms to approximate the solution accurately, thereby increasing
computational overhead. In contrast, the Elzaki Projected Differential Transform Method (EPDTM)
provides a direct, non-iterative framework that simplifies implementation, improves convergence speed,
and offers higher numerical precision with reduced computational cost.

The EPDTM is utilized to investigate the fractional-order properties inherent in the system of
Korteweg-de Vries (KdV) equations. Specific illustrative cases are examined to demonstrate the
effectiveness of this approach. Results for both fractional-order and integral-order models are obtained using
this technique. Moreover, this method proves beneficial for addressing a broad spectrum of fractional-order
linear and nonlinear partial differential equations.

FRACTIONAL CALCULUS THEORY

In this study, we adopt the Caputo definition of fractional derivatives, as it allows for the use of classical
initial conditions (in terms of integer-order derivatives), which makes it more suitable for physical and
engineering applications compared to the Riemann—Liouville form.

Definition 1. The Riemann—Liouville fractional operator ¥ D” of order ¥ is defined as follows [39, 401:
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Definition 2: The operator “ of fractional-order Riemann—Liouville integration is formally defined as
presented in references [39, 40].
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Definition 4. The Caputo fractional operator “ D of order & is defined as follows [39, 40]:
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Definition 5. The fractional-order Caputo operator of the Elzaki transform is given as follows [39, 40]:
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THE GENERAL APPROACH OF THE ELZAKI PROJECTED DIFFERENTIAL
TRANSFORM METHOD (EPDTM)

Let’s explore the typical structure of a fractional partial differential equation,
CD.Z“('/’a ‘9)+ P“('//ae)“L Q“('//, 9): g(‘/fﬁ) i-l<a<ijieN (10)

where P and Q denote the linear and nonlinear operators, respectively, and g represents a source function.
The initial condition can be stated as

uy.0)=h(w) L=012,.i-1 (a1
Transforming Equation (10) using the the Elzaki transformation yields:
E|* Dyuly,0)|+ E[Pu(y,0)+ Quly, 0)]= E[g(y.6)] (12
Applying the Elzaki differentiation yields:
4 o (13)
Eluly,0)]=3"5*“""ul)(y,0)+ S Elg(y,0)]- S E[Puly, 6)+ Quly, 0)]
=0
The inverse Elzaki transform converts Equation (13) to:
(14)
0)= 5| S5 005l 0)| - 5 ElPuly0)+ 0l 0)]
Through the projected differential transform technique, we have
(15)

)= ulv0)

Given the linearity of operator P and the nonlinearity of Operator Q, we observe the following outcome:

oy, 0)= {Zsz w1y (y,0)+ 5 Elg (z//,ﬁ)]} (16)

Jj=0
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Ultimately, this produces the n-term result in series format, represented as:
uly,0)=u,y.0)+,(y.0)+ 1,y 0)+ s, 0)+ ..+, (y.0) (19)
9) = Z U (‘// ,0 )
The resulting series solution k=0 represents a time-domain reconstruction of the physical

system's state, where each coefficient i (W’ 9) captures the spatial behavior associated with the k-th time
derivative of the solution. These coefficients are computed recursively using the EPDTM framework and
encode how wave features like amplitude, dispersion, and nonlinearity evolve over time. In physical terms,
the convergence of this series ensures that the computed solution accurately reflects the underlying wave
dynamics governed by the fractional KdV system.

APPLICATIONS OF THE PROPOSED METHODOLOGY (EPDTM)

To demonstrate the effectiveness and simplicity of the method, several cases concerning fractional-order
nonlinear systems of partial differential equations will be examined.

Case 1: Consider the fractional-order nonlinear Korteweg-de Vries (KdV) system, given by:
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with initial conditions
(21)
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For @ = Lthe exact solutions of Equation (20) from the Korteweg-de Vries scheme are provided as follows:

u(y,0)=B* sech ((2” ﬂzl// 0,623(9) (22)

V(V/,Q):\/gﬂz sechz(ng'BTl//_#J

Applying the Elzaki transform to Equation (20), we derive:
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By applying the inverse Elzaki transform to Equation (25), we obtain:
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Now, employing the projected differential transform method, we obtain:
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At n=0, we have,
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Atn =2, we have
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Case 2: Consider the fractional-order nonlinear Korteweg-de Vries (KdV) system, given by:
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For @ = Lthe exact solutions of Equation (43) from the Korteweg-de Vries scheme are provided as follows:
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Now, employing the projected differential transform method, we obtain:
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u(y,0)=E {S E{ 5,8 sech (2 5 Jﬂ

Vi (l//s 0) =E" |:SaE|:%ﬂ4 sinh(% + ﬂ—zl//j sec h3(%+ ﬁ%j}}

o Py 0° (55)
nly.0)=- ﬂseCh (2 2)F(a+l)’

¢ Py ¢ Py 0°
v,(w,0)= ,8 smh[2 5 jsech (2 5 jm
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Atn=1, we have

u,(y.0)=E" [SQE[Az + B, ]] (56)
Vz(‘//ag):Eil[ aE[C2+D2+E2]]
4, = _avl (1//,0)
oy
1 0
B, = _E @[“0 (‘/19‘9)% (l//"g)"' U (l//: 9)“0 (l/la 9)] (57)
Cz——aul(l//’e)
oy
3
D, _602(%,9)
7%
0
E, :—w[uo(l//,e)vl(l//,H)+ul(l//,H)Vo(l//,H)]
5 - (58)
“2(1//49)=E_{S“E{—%Sinh((%’Bszech3(%+7¥/jr(z+l)ﬂ
_ 1| qa 5_6 2| @ ﬁw _ 4 2 ﬂ_l// o“
vz(l//,e)—E {S E{ 2 (2cosh ( + 2 j 3jsech [2+ 5 jl"(a+1)ﬂ
_ B (e By (e, Bv) 6 (59)
u,(y.0)= > s1nh(2+ 5 jsech [2+ 5 jF(2a+1)
_ - pb 2 @ ﬁl// _ 4 2 ﬁ_l// 020[
n0)=3s (2005}1( " J 3}60}1 (2+ 2 jl"(2a+1)
Atn =2, we have
uy(w,0)= £ [ E[4, + B,]] (60)
V3(W’0):E71[SQE[C3+D3+E3]]
v, (,0) (61)
A, =——2""
oy
1 0
B, :_Ea_[ul('//ag)uz(‘ﬂ"g)"'uz( 70)“1('//:‘9)]
7%
C - ou,(v,0)
oy
3
D, auaz(yé,e)
W

By == 0O 0.0) 1.0, 1.0
v

s (4sinh(£+ﬂ—chosh3[£+&j—125inh(£+ﬁ—chosh(ﬂ+ﬁln
)22 T2 20 22/
3

T8 +1 20 2 22
Ga+1) + 4cosh2(£+'8—vlj—5 Bo
22 r2a +1)
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4cosh [¢ ﬁl//) 6(:0sh3(£-¢—ﬂ—wj+4ﬂ2 cosh5[£+ ﬁ—y/j (62)
2 2 2 2 2 2 0*”

vy(y.0)=— /::sech (‘5 ﬂ*”j ~308° cosh{? ﬁ;’)+30ﬂ cosh(? ﬁ;’j ra+1)

8cosh ((/J ﬂszmh(¢ ﬂl//] 15sin h(¢ ﬂ‘//] B o
2 2 2 2 ))TQa+1)T(3a+1)

And so on, then the result in series form is given as

tanh (/7 'Bl// ,6’ sech ((p 'HV/) o (63)
2 2 )T(a+1)
—ﬂ—smh(g ﬂ‘//)sech (¢ ﬂl//j i
2 22 2 2 )T(2a+1)
(4sinh((p+ﬂl//jcosh ((/’ ﬂy]j—nsinh((p ﬁchosh((p ﬂ"’j}
B0 B 22 22 22 22
s Ga ) (5+T) 2 g
(4cosh [(p ﬂV/j SJ B
22 r(2a +1)
v(y,0)= 1+~ ﬁ sech’ [(p ﬁzwj ;ﬂ smh[? 'B—;)sech (? ﬂ;’]% (64)
lﬂ (2cosh ((p ﬂ'//j jsech [¢ ﬁl//j o
4 22 2 2 )JTQa+1)
4cosh5(£+ﬂl]—6cosh3(£+ﬂl]+4ﬁzcosh5(ﬂ+ﬂ—y/j
2 2 2 2 2 2
Bo e By _ 2 s(e By 2 ¢ By
—8r(3a+1)sech (5+7] 308 cosh( + 5 j+30,8 cosh( + 5 j + ..
[8cosh (qp ﬂl}sinh[£+ﬂ—wj—155mh(¢ ﬁ'//)j po*
| 20 2 2 2 2 2 ))TQ2a+1)]
RESULTS AND DISCUSSION

In this section, we rigorously examined the outcomes derived from the EPDTM (Elzaki Projected
Differential Method) for both Case 1 and Case 2. Our objective was to assess and verify the effectiveness,
convergence, and accuracy of these methods by comparing them against exact solutions. This analysis aims
to establish the validity of our approach and derive meaningful conclusions.

1= s 282 8]

3
v(g//,é'):\/gﬂzsech2 $ Py _cho
2 2 and the

Case 1: We have the exaction solution to be : 2 ,
numerical solution wusing EPDTM is given in equation (41) and (42) to be
B:=0.1;00:=0.5;¢c:=75¢:=0.1,y:=-30,0 := 0.1

13
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2
2 n8 2a
+02ﬁ [2cosh2(%+ ﬂwj—3)sech4(£+ﬁ—u/) o

2 2 2 JT(2a+1)
4cosh5(§+ﬂ7'//)—60sinh(%+ﬂ—;jjcosh3(%+ﬁ2—wj
Sechg[ﬂJrﬂiW]@ﬁ”gh sinh(§+ﬂ7‘/’)

22 +9OSinh[£+ﬂ]COSh[£+&] +...
4r(3a +1) 22 22

.p3p2e

P 24cosh"(f+ﬂ—"’j—84cﬂ3cosh2[£+ﬁ—‘”j+63

2 +1) 2 2 20 2

v(y,0)= \Eﬁz sechz(%+ﬂ7y/j+£c%ﬁ5 tanh[£+ﬂ7y/)sechz(%+ 'B—Wj o

2 2 2 JT(a+1)
5 2a
+£czﬂ8 2coshz(£+ﬁ—w)—3 sech4(£+&j o
4 22 2 2 JT(2a+1)
. 4cosh5(§+%)—605inh[%+ﬂ%)cosh3(%+ﬁ%)
sech8[£+ﬂ—chzﬂ”63"’ sinh(%+ﬂ71//j
2 2 +90$inh(£+ﬁ—chosh(£+ﬁ—wj +...
8C(3e +1) 2 2 20 2
3n2a
LB 24cosh"(£+'H—V/J—S%ﬁ3 cosh2(£+ﬂl)+63
r(2a +1) 2 2 2 2

For case 1; at B =0.0001,c¢=0.05,¢=0.00001, ;4 =1 Figures 1 and 2 illustrate the

graphical representation of the exact solutions for u(y,0) and V(W’g), respectively. Figures 1 and 2

present the solutions for u(y, e)and vy, 0) as obtained via the Elzaki Projected Differential Transform
Method (EPDTM). Table 1 presents a comparative assessment of the convergence characteristics of
fractional solutions obtained using EPDTM in relation to the corresponding integer-order solutions and
exact solutions, emphasizing the method's accuracy and dependability at

Figure 1. Exact analytical solution of the function u(y,0) for Case 1 of the fractional KdV system. This
plot serves as a reference benchmark for validating the numerical results obtained using EPDTM.
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Figure 2. Exact analytical solution of the function vy, 0) for Case 1. This result is used to assess the
accuracy of the EPDTM in approximating the coupled system.

Figure 3. Numerical solution of u(y,0) for Case 1 obtained using the Elzaki Projected Differential
Transform Method (EPDTM). The solution closely approximates the exact profile shown in Figure 1.
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Figure 1. Numerical solution of vy, 0) for Case 1 computed using EPDTM, matching the behavior of the
exact solution in Figure 2.

Table 1. Comparative analysis of the convergence behaviour of the fractional solutions to the integer-order
solutions through EPDTM with the exact solution for case 1

Case 1 Error
a=05 EPDTM(a_l) Exact(a_l)
Voo V U V /] V U V
-30 0.1 0.001974186393 0.003121462761 0.001976457386 0.003125053519 0.001976457385 0.003125053517 0.000000000001 0.000000000002

0.2 0.001972881029 0.003119398795 0.001975572361 0.003123654173 0.001975572361 0.003123654171 0.000000000000 0.000000000002

0.3 | 0.001971880202 0.003117816342 0.001974687686 0.003122255377 0.001974687684 0.003122255374 0.000000000002 0.000000000003

0.4 | 0.001971037018 0.003116483142 0.001973803359 0.003120857132 0.001973803354 0.003120857126 0.000000000005 0.000000000006

0.5 0.001970294574 0.003115309228 0.001927919379 0.003119459438 0.001972919373 0.003119459429 0.000000000006 0.000000000008

0 0.1 0.009975918340 0.01577331185 0.009975290157 0.01577231861 0.009975290157 0.015772318610 0.000000000000 0.000000000000
0.2 0.009976274262 0.01577387460 0.009975537471 0.01577270965 0.009975537469 0.015772709640 0.000000000002 0.000000000001
0.3 0.009976544504 0.01577430187 0.009975783546 0.01577309872 0.009975783543 0.015773098720 0.000000000003 0.000000000000

0.4 | 0.009976770396 0.01577465903 0.009976028388 0.01577348586 0.009976028379 0.015773485840 0.000000000009 0.000000000002

0.5 0.009976967947 0.01577497137 0.009976271992 0.01577387102 0.009976271978 0.015773871000 0.000000000014 0.000000000002

30 0.1 0.001652653822 0.002613075133 0.001650714790 0.002610009252 0.001650714791 0.002610009253 0.000000000001 0.000000000001

0.2 0.001653771130 0.002614841754 0.001651469111 0.002611201938 0.001651469111 0.002611201938 0.000000000000 0.000000000000

0.3 | 0.001654629188 0.002616198469 0.001652223741 0.002612395113 0.001652223743 0.002612395116 0.000000000002 0.000000000003

0.4 | 0.001655353049 0.002617342998 0.001652978681 0.002613588780 0.001652978685 0.002613588784 0.000000000004 0.000000000004

0.5 0.001655991151 0.002618351930 0.001653733933 0.002614782936 0.001653733938 0.002614782944 0.000000000005 0.000000000008
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u(y,0)= ﬂ(tanh[(g sy P '/’] 1),

2 2

¢ Py By
2 2

v(l//,9)=—1+lﬂzsech ( j
Case 2: We have the exaction solution to be 2 , and the

numerical solution using EPDTM is given in equation (63) and (64) to be

I O

2 )T(a+1)

5 2a

—ﬂ—smh(g ﬂszech [(0+ﬂ‘//] 4
2 22 2 2 )Ta+1)

50" 5 (4smh[(§ ﬂ;’]cosh ((§+'32‘//)—125inh[(§+’32‘//)cosh[(§+ﬂ2wﬁ
+ : sech (¢+—W ) .
8M(3a +1) 2 2 [4cosh [q) ﬁwj_sj B0
2 2 r2a+1)

o e 5 ) ()

lﬂ(Zcosh ((p ﬁWj ]sech ((p ﬂl//j o=
4 202 2 2 )T2a+1)

4cosh5(£+ ﬂl) - 6cosh3[£+ ﬁl) +4p° coshs[ng&)
2 2 2 2 2

2
BG* 1@ BY\| _12082 caeri| 2. BY 2 9. By
_8F(3a+1)seCh [5+Tj 304" cosh ( + 5 j+30ﬁ cosh(2+ 2 j +..
[SCOSh [(D ﬂszmh(w 'BWJ ISSmh((p ﬂij po”
| 2 2 2 2 2 ))T(2a+1)|

For case 2; at p=0.1c=5¢=0.1 and @ =1 Figures 3 and 4 illustrate the graphical representation of
the exact solutions for M(W’ 9) and V(V/’ 0), respectively. Figures 3 and 4 present the solutions for u(lﬂ, 9)

and V(W’Q) as obtained via the Elzaki Projected Differential Transform Method (EPDTM). Table 2
provides a comparative analysis of the convergence behavior of the fractional solutions derived through
EPDTM relative to the exact solutions, highlighting the method's precision and reliability.
v=-30..30,0=0..1
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Figure 2. Exact analytical solution of u(y,0) for Case 2 of the fractional KdV system. This reference
solution enables a direct comparison with EPDTM-based numerical results.

Figure 3. Exact analytical solution of vy, 0) for Case 2. Used for validating the accuracy of the proposed
EPDTM approach in solving the coupled system
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Figure 4. Numerical approximation of u(y,0) for Case 2 using EPDTM. The result demonstrates strong
agreement with the exact solution shown in Figure 5.

Figure 5. Numerical EPDTM solution for vy, 0) in Case 2, exhibiting close alignment with the exact
solution from Figure 6
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Table 2. Comparative analysis of the convergence behaviour of the fractional solutions to the integer-order
solutions through EPDTM with the exact solution for case 2

Error

Casel a= 05 EPDTM(a = 1) Exact(a = 1)

Voo |u V /] V /] y [} V

30 0.1 0.01039552283 -0.9990144830 0.01042083034 -0.9990122138 0.01042083033 -0.9990122138 0.00000000000 0.00000000000
0.2 0.01038099851 -0.9990157881 0.01041095690 -0.9990130984 0.01041095689 -0.9990130983 0.00000000001 0.00000000001
0.3 0.01036987412 -0.9990167893 0.01040109231 -0.9990139824 0.01040109229 -0.9990139821 0.00000000002 0.00000000003
0.4 0.01036050966 -0.9990176337 0.01039123656 -0.9990148659 0.01039123653 -0.9990148652 0.00000000003 0.00000000007
0.5 0.01035226987 -0.9990183778 0.01038138966 -0.9990157490 0.01038138960 -0.9990157477 0.00000000006 0.00000000013

0 0.1 0.10481784540 -0.9950116091 0.10494596110 -0.9950122312 0.10494596100 -0.9950122313 0.00000000010 0.00000000001
0.2 0.10474410390 -0.9950112550 0.10489608210 -0.9950119856 0.10489608210 -0.9950119858 0.00000000000 0.00000000002
03 0.10468751400 -0.9950109835 0.10484620070 -0.9950117417 0.10484620080 -0.9950117428 0.00000000010 0.00000000011
0.4 0.10463980260 -0.9950107538 0.10479631670 -0.9950114997 0.10479631700 -0.9950115023 0.00000000030 0.00000000006
0.5 0.10459776500 -0.9950105504 0.10474643030 -0.9950112592 0.10474643080 -0.9950112643 0.00000000050 0.00000000051

30 0.1 0.19134903640 -0.9991723250 0.19137029540 -0.9991742654 0.19137029540 -0.9991742654 0.00000000000 0.00000000000
0.2 0.19133676780 -0.9991712072 0.19136203430 -0.9991735108 0.19136203430 -0.9991735107 0.00000000000 0.00000000001
0.3 0.19132733630 -0.9991703496 0.19135376570 -0.9991727555 0.19135376560 -0.9991727552 0.00000000010 0.00000000003
0.4 0.19131937350 -0.9991696267 0.19134548950 -0.9991719999 0.19134548940 -0.9991719992 0.00000000010 0.00000000007
0.5 0.19131234920 -0.9991689902 0.19133720590 -0.9991712438 0.19133720560 -0.9991712426 0.00000000030 0.00000000012

The error analysis presented in the tables reveals that the absolute error between the EPDTM solutions and
the exact solutions remains consistently low across the spatial domain. Notably, at representative points
such as x=—30, x=0, and x=30, the numerical results maintain high accuracy, with only minor variations
due to the influence of fractional order dynamics. This demonstrates that EPDTM offers reliable spatial
convergence and maintains solution fidelity throughout the domain, regardless of distance from the origin.

CONCLUSION

In this study, we explored the application of the Elzaki Projected Differential Transform Method (EPDTM)
to fractional-order nonlinear Korteweg-de Vries (KdV) systems. Through detailed analysis and numerical
simulations, we demonstrated the effectiveness and applicability of EPDTM in deriving approximate
solutions for these complex systems. Firstly, we established the general approach of EPDTM for fractional
partial differential equations, emphasizing its capability to handle both linear and nonlinear operators
effectively. By applying the method to fractional-order KdV equations, we derived approximate solutions
that closely approximate the exact solutions derived from theoretical frameworks. Specifically, we
examined two illustrative cases of fractional-order nonlinear KdV systems. For each case, we conducted
thorough numerical simulations and compared the results obtained through EPDTM with exact solutions.
The comparison revealed excellent convergence and accuracy of EPDTM in capturing the behavior of
fractional-order systems over time and space domains. Our findings underscore the utility of EPDTM in
addressing challenges posed by fractional derivatives in nonlinear PDEs, offering a robust computational
tool for researchers and practitioners in various fields of science and engineering. The method's ability to
provide accurate approximations while maintaining computational efficiency makes it particularly valuable
for studying complex physical phenomena governed by fractional-order dynamics.

In addition to its numerical accuracy, EPDTM exhibits significant computational efficiency. The
method produces accurate approximations using only a few terms in the series expansion, avoiding the
iterative correction steps commonly required by methods such as ADM or VIM. This reduction in
computational effort translates into faster runtimes and lower memory usage, making EPDTM particularly
suitable for large-scale or real-time simulations involving fractional-order systems. Looking ahead, further
research could explore enhancements and extensions of EPDTM, such as incorporating adaptive techniques
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or exploring its application to other classes of nonlinear PDEs. Such efforts would deepen our understanding
and broaden the practical applications of EPDTM in modeling and analysis of complex systems.

In conclusion, this study contributes to advancing the methodology of solving fractional-order PDEs and
provides a solid foundation for future explorations in this interdisciplinary field.
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