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Abstract 

 
This study investigates the application of the Elzaki Projected Differential Transform Method (EPDTM) to fractional-

order nonlinear Korteweg-de Vries (KdV) equations, which describe various nonlinear wave phenomena in physics 

and engineering. The method effectively addresses both linear and nonlinear operators and fractional derivatives. 

Through two illustrative examples, the method accurately captures the dynamics of fractional-order wave systems and 

achieves results in excellent agreement with exact solutions. The findings demonstrate the method’s precision, fast 

convergence, and computational efficiency, underscoring EPDTM's potential as a robust tool for solving nonlinear 

partial differential equations with fractional dynamics. 

 
Keywords: Fractional Korteweg-de Vries equations, Elzaki transform, Projected Differential Transform Method, 

Fractional calculus, Numerical simulation 

 

INTRODUCTION  

 

The Korteweg-de Vries (KdV) equation is a fundamental mathematical model used to describe the 
behavior of weakly nonlinear long waves in various fields of physics and engineering. Its significance lies 

in its ability to capture the intricate balance between weak nonlinearity and weak dispersion, which governs 

wave evolution. The equation, named after Diederik Korteweg and Gustav de Vries, was introduced in their 

seminal 1895 paper, where they demonstrated its applicability to small-amplitude long waves on the free 

surface of water. Initially derived by Joseph Boussinesq in 1877, the KdV equation has since found 

applications far beyond its original context of shallow-water waves in canals. It plays a crucial role in 

explaining phenomena such as shock waves, traveling waves, and solitons in diverse areas including fluid 

dynamics, aerodynamics, and continuum mechanics [1-10]. The equation models processes like shock wave 

formation, turbulence, boundary layer behavior, and mass transport, making it an indispensable tool in 

theoretical and applied research. One of the most remarkable properties of the KdV equation is its exact 

solvability. This property was first highlighted by Gardner et al. in 1967, who showed that the KdV equation 

could be solved exactly as an initial-value problem with arbitrary initial data in a suitable function space. 

This discovery marked a revolution in the study of nonlinear partial differential equations, attracting 

significant scholarly attention. Notably, Zakharov and Faddeev demonstrated in 1971 that the KdV equation 

exemplifies an infinite-dimensional Hamiltonian system that is completely integrable [11-15]. The exact 
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solutions of the KdV equation, often obtained using the inverse scattering transform, include solitons—

stable, localized wave packets that maintain their shape while traveling at constant speeds. These solutions 

have made the KdV equation a prototypical example in the study of exactly solvable models in nonlinear 

dynamics. The mathematical richness and the intriguing physical properties of the KdV equation continue 

to inspire active research [15-20]. 

 

Fractional calculus (FC) extends the concept of traditional calculus by allowing derivatives and 

integrals to be of non-integer (fractional) order. This extension proves to be particularly effective in 

modeling complex engineering and physical systems where standard integer-order differential equations 

fall short. Unlike traditional models, fractional calculus (FC) offers a more precise representation of the 

dynamics involved in diverse phenomena spanning multiple disciplines. These include chemistry, 

economics, electrical engineering, control theory, groundwater issues, mechanics, signal and image 

processing, and biological sciences. In recent years, fractional differential equations have become 

instrumental in the study of nonlinear equations and their traveling-wave solutions. These solutions are 

essential for understanding nonlinear physical processes, which often involve intricate interactions and 

evolutions of waves [8, 10, 20-25]. The Korteweg-de Vries (KdV) equation, a cornerstone in the analysis 

of nonlinear wave phenomena, benefits significantly from the application of fractional calculus. By 

incorporating fractional derivatives, the KdV equation can model a broader spectrum of physical 

phenomena, providing a more comprehensive framework for studying the interaction and evolution of 

nonlinear waves. The application of fractional calculus to the KdV equation enhances its capability to 

describe various physical processes more accurately. This approach is particularly useful in situations where 

traditional models with integer-order derivatives are inadequate. As a result, fractional calculus has emerged 

as a powerful tool in advancing our understanding of complex systems governed by nonlinear dynamics. 

Through the integration of fractional calculus, researchers can develop more robust and versatile models of 

the KdV equation. These models not only improve our theoretical understanding but also have practical 

implications in fields ranging from fluid dynamics to quantum mechanics. The ongoing exploration of 

fractional-order KdV equations continues to reveal new insights and applications, underscoring the 

importance of this mathematical framework in modern scientific research [26-30]. 

 

The fractional-order coupled Korteweg-de Vries (KdV) equations extend the classical KdV 

framework by incorporating fractional derivatives, which allows for a more nuanced modeling of complex 

wave phenomena. These equations are defined as follows: 
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where c and d  are constants, and   denotes the parameter that characterizes the order of the fractional 

derivatives of ( ) ,u  and ( ) ,v , respectively. The functions ( ) ,u  and ( ) ,v  represent the 

fundamental variables of space and time, and are considered to vanish for 0  and 0 . When 

1== dc , this formulation simplifies to the traditional coupled Korteweg-de Vries (KdV) equations. 

In the equations above






 u

 and 






 v

denote the fractional derivatives of order . These 

derivatives are generalizations of the standard integer-order derivatives, providing a powerful tool to 

describe memory and hereditary properties inherent in various physical processes. Fractional derivatives 

are particularly effective in capturing the complex dynamics of systems where the influence of past states 

decays over time, which is a common characteristic in many natural and engineered systems. The constants 
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c and d  play a crucial role in determining the characteristics of the wave propagation and interaction 

described by the equations. By adjusting these constants, one can model different physical scenarios and 

behaviors. The parameter  , which lies between 0 and 1, indicates the order of the fractional derivative. 

This parameter provides an additional degree of freedom in the model, allowing for a more flexible and 

accurate representation of the system's dynamics. The functions ( ) ,u  and ( ) ,v  are the primary 

variables representing the wave phenomena in space and time. These functions are assumed to be zero for 

negative values of 


and  , implying that the waves do not exist before the origin in space and time. This 

consideration is essential for ensuring the physical relevance of the solutions, as it aligns with the causality 

principle, where effects follow causes. When the constants c and d  are set to 1, the fractional-order 

coupled KdV equations simplify to the classical coupled KdV equations. This reduction highlights the 

fractional-order equations' generality, encompassing the classical case as a specific instance. The classical 

coupled KdV equations are well-studied and known for describing the interaction of nonlinear waves, 

solitons, and other complex wave structures [1-5, 30-32]. 

 

Over the years, various researchers have proposed and developed numerous methods to solve the 

Korteweg-de Vries (KdV) equations, which model a wide range of nonlinear wave phenomena. Here, we 

review significant contributions to the solution of these equations: Maturi (2012) utilized the Adomian 

decomposition method to solve the Generalized Hirota–Satsuma coupled KdV equations [31]. By applying 

the differential transform technique, Gokdogan et al [36] studied approximate solutions for coupled KdV 

equations. This method transforms the differential equations into a series of algebraic equations, which can 

be solved iteratively to obtain approximate solutions.  The analysis of nonlinear KdV equations using the 

Homotopy Analysis Method (HAM) was suggested by Jafari and Firoozjaee (2010) [39]. Lu et al. (2020) 

[40] employed fractional calculus by He's method to compute numerical solutions for a system of coupled 

nonlinear fractional Korteweg-de Vries (KdV) equations. 

 

The Elzaki Projected Differential Transform Method (EPDTM) is proposed as a novel approach to 

solving fractional-order coupled KdV equations due to several compelling reasons. The EPDTM is designed 

to efficiently handle the nonlinearity and fractional nature of the equations. Traditional methods often 

struggle with the complexities introduced by fractional derivatives, but EPDTM can seamlessly incorporate 

these into the solution process. The EPDTM is known for its accuracy and rapid convergence, which are 

crucial for solving complex coupled equations. By projecting the differential transform method through the 

Elzaki transform, this method reduces computational errors and enhances solution precision. One of the 

primary advantages of the EPDTM is its ability to simplify the computational process. By transforming the 

problem into a series of algebraic equations, it reduces the difficulty associated with solving the original 

fractional differential equations directly. The EPDTM can be applied to a wide range of initial and boundary 

value problems, making it a versatile tool for various applications. Its adaptability to different types of 

fractional differential equations makes it particularly suitable for the fractional-order coupled KdV 

equations. The method provides enhanced analytical capabilities, allowing for a deeper understanding of 

the underlying physical phenomena. By obtaining more accurate and detailed solutions, researchers can 

better analyze the wave interactions and dynamics described by the fractional-order coupled KdV equations. 

The coupled nature of the fractional-order KdV equations necessitates a method that can effectively address 

the interaction between multiple variables. The EPDTM is well-suited for coupled systems, providing a 

robust framework for analyzing the interplay between the fundamental functions of space and time. By 

employing the Elzaki Projected Differential Transform Method, we aim to achieve a more comprehensive 

and precise analysis of the fractional-order coupled KdV equations, advancing our understanding of 

nonlinear wave phenomena and enhancing the applicability of these models in various scientific and 

engineering fields [2-7, 38-40]. 

 

Despite their wide use, many existing methods for solving fractional differential equations—such 

as the Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), and Variational 

Iteration Method (VIM)—encounter significant computational limitations. These approaches often rely on 
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recursive correction steps, linearization, or perturbative assumptions, which can be time-consuming and 

difficult to implement for highly nonlinear or stiff systems. Moreover, the convergence of the resulting 

series may be slow or require many terms to approximate the solution accurately, thereby increasing 

computational overhead. In contrast, the Elzaki Projected Differential Transform Method (EPDTM) 

provides a direct, non-iterative framework that simplifies implementation, improves convergence speed, 

and offers higher numerical precision with reduced computational cost. 

 

The EPDTM is utilized to investigate the fractional-order properties inherent in the system of 

Korteweg-de Vries (KdV) equations. Specific illustrative cases are examined to demonstrate the 

effectiveness of this approach. Results for both fractional-order and integral-order models are obtained using 

this technique. Moreover, this method proves beneficial for addressing a broad spectrum of fractional-order 

linear and nonlinear partial differential equations. 

 

FRACTIONAL CALCULUS THEORY 

 
In this study, we adopt the Caputo definition of fractional derivatives, as it allows for the use of classical 

initial conditions (in terms of integer-order derivatives), which makes it more suitable for physical and 

engineering applications compared to the Riemann–Liouville form. 

Definition 1. The Riemann–Liouville fractional operator 
DRL

of order  is defined as follows [39, 40]:  
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Definition 2: The operator 
I of fractional-order Riemann–Liouville integration is formally defined as 

presented in references [39, 40]. 
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for 0 , and Niii − ,1   
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Definition 4. The Caputo fractional operator 
Dc

of order  is defined as follows [39, 40]: 
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Definition 5. The fractional-order Caputo operator of the Elzaki transform is given as follows [39, 40]: 
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for ii − 1 . 

 

THE GENERAL APPROACH OF THE ELZAKI PROJECTED DIFFERENTIAL 

TRANSFORM METHOD (EPDTM) 

 
Let’s explore the typical structure of a fractional partial differential equation, 
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where P and Q denote the linear and nonlinear operators, respectively, and 
g

 represents a source function. 
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Transforming Equation (10) using the the Elzaki transformation yields: 
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Given the linearity of operator P and the nonlinearity of Operator Q, we observe the following outcome:  

( ) ( ) ( ) ( ) 







+= 

=

+−−
n

j

jj gESuSEu
0

21

0 ,0,,  

, 

(16) 

http://ojs.upsi.edu.my/index.php/EJSMT/index


EDUCATUM JSMT Vol. 12 Number 1 (2026) 

ISSN 2289-7070 / e-ISSN 2462-2451(1-23) 

https://ejournal.upsi.edu.my/index.php/EJSMT/index 
 
 

6 

( ) ( ) ( )    ,,, 00

1

1 QuPuESEu +−= −

, 
(17) 

( ) ( ) ( )



















+−= 



=



=

−

+

00

1

1 ,,,
j

j

j

jn uQuPESEu  

, 1n   

(18) 

Ultimately, this produces the n-term result in series format, represented as:  
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The resulting series solution
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 represents a time-domain reconstruction of the physical 

system's state, where each coefficient 
( ) ,ku

captures the spatial behavior associated with the 𝑘-th time 

derivative of the solution. These coefficients are computed recursively using the EPDTM framework and 

encode how wave features like amplitude, dispersion, and nonlinearity evolve over time. In physical terms, 

the convergence of this series ensures that the computed solution accurately reflects the underlying wave 

dynamics governed by the fractional KdV system. 

 

APPLICATIONS OF THE PROPOSED METHODOLOGY (EPDTM) 

 
To demonstrate the effectiveness and simplicity of the method, several cases concerning fractional-order 

nonlinear systems of partial differential equations will be examined. 

 

Case 1: Consider the fractional-order nonlinear Korteweg-de Vries (KdV) system, given by: 
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For 1= the exact solutions of Equation (20) from the Korteweg-de Vries scheme are provided as follows: 
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Applying the Elzaki transform to Equation (20), we derive: 
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By applying the inverse Elzaki transform to Equation (25), we obtain: 
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Now, employing the projected differential transform method, we obtain: 
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Where, 

( )

( )
( )

( )
( )

( )

( )
( )







=

−
+

+

=

−
+

=

−
+

+




−=




−=




=




−=




−=

m

n

nm
nn

n
n

m

n

nm
nn

m

n

nm
nn

n
n

v
ucE

v
cD

v
vC

u
ucB

u
cA

0

1

3

3

1

0

1

0

1

3

3

1

,
,3

,

,
,6

,
,6

,
























 

(28) 
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At n = 2, we have 
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And so on, then the result in series form is given as 
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(42) 

 

Case 2: Consider the fractional-order nonlinear Korteweg-de Vries (KdV) system, given by: 
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with initial conditions 
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(44) 

For 1= the exact solutions of Equation (43) from the Korteweg-de Vries scheme are provided as follows: 
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(45) 

Applying the Elzaki transform to Equation (43), we derive: 
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(48) 

By applying the inverse Elzaki transform to Equation (47), we obtain: 
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Now, employing the projected differential transform method, we obtain: 
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At n=0, we have, 
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At n = 1, we have 

( )   
( )   222

1

2

22

1

2

,

,

EDCESEv

BAESEu

++=

+=

−

−









 

(56) 

( )

( ) ( ) ( ) ( ) 

( )

( )

( ) ( ) ( ) ( ) 

















,,,,

,

,

,,,,
2

1

,

01102

3

1

3

2

1
2

01102

1
2

vuvuE

u
D

u
C

uuuuB

v
A

+



−=




−=




−=

+



−=




−=

 

 

 

 

(57) 

( )
( )

( )
( ) 




















+








+








−








+=


















+








+








+−=

−

−

122
sec3

22
cosh2

4
,

122
sec

22
sinh

2
,

42
6

1

2

3
5

1

2

















hESEv

hESEu

 

(58) 

( )
( )

( )
( )1222

sec3
22

cosh2
4

1
,

1222
sec

22
sinh

2
,

2
426

2

2
3

5

2

+








+








−








+=

+








+








+−=















hv

hu

 

(59) 

 

 

At n = 2, we have 
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And so on, then the result in series form is given as 
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(64) 

 

RESULTS AND DISCUSSION 

 
In this section, we rigorously examined the outcomes derived from the EPDTM (Elzaki Projected 

Differential Method) for both Case 1 and Case 2. Our objective was to assess and verify the effectiveness, 

convergence, and accuracy of these methods by comparing them against exact solutions. This analysis aims 

to establish the validity of our approach and derive meaningful conclusions. 
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, and the 

numerical solution using EPDTM is given in equation (41) and (42) to be 
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For case 1; at ,00001.0,05.0,0001.0 ===  c and 1= . Figures 1 and 2 illustrate the 

graphical representation of the exact solutions for ( ) ,u and ( ) ,v , respectively. Figures 1 and 2 

present the solutions for ( ) ,u and ( ) ,v  as obtained via the Elzaki Projected Differential Transform 

Method (EPDTM). Table 1 presents a comparative assessment of the convergence characteristics of 

fractional solutions obtained using EPDTM in relation to the corresponding integer-order solutions and 

exact solutions, emphasizing the method's accuracy and dependability at   
 

 
 

Figure 1. Exact analytical solution of the function ( ) ,u  for Case 1 of the fractional KdV system. This 

plot serves as a reference benchmark for validating the numerical results obtained using EPDTM. 
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Figure 2. Exact analytical solution of the function ( ) ,v   for Case 1. This result is used to assess the 

accuracy of the EPDTM in approximating the coupled system.  
 

 
 

 

Figure 3. Numerical solution of ( ) ,u  for Case 1 obtained using the Elzaki Projected Differential 

Transform Method (EPDTM). The solution closely approximates the exact profile shown in Figure 1. 
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Figure 1. Numerical solution of ( ) ,v  for Case 1 computed using EPDTM, matching the behavior of the 

exact solution in Figure 2.  

 

Table 1. Comparative analysis of the convergence behaviour of the fractional solutions to the integer-order 

solutions through EPDTM with the exact solution for case 1 
Case 1 

5.0=
 EPDTM (

1=
) Exact (

1=
) 

Error 


 


 

u
 

v
 

u
 

v
 

u
 

v
 

u
 

v
 

-30 0.1 0.001974186393 0.003121462761 0.001976457386 0.003125053519 0.001976457385 0.003125053517 0.000000000001 0.000000000002 

 0.2 0.001972881029 0.003119398795 0.001975572361 0.003123654173 0.001975572361 0.003123654171 0.000000000000 0.000000000002 

 0.3 0.001971880202 0.003117816342 0.001974687686 0.003122255377 0.001974687684 0.003122255374 0.000000000002 0.000000000003 

 0.4 0.001971037018 0.003116483142 0.001973803359 0.003120857132 0.001973803354 0.003120857126 0.000000000005 0.000000000006 

 0.5 0.001970294574 0.003115309228 0.001927919379 0.003119459438 0.001972919373 0.003119459429 0.000000000006 0.000000000008 

0 0.1 0.009975918340 0.01577331185 0.009975290157 0.01577231861 0.009975290157 0.015772318610 0.000000000000 0.000000000000 

 0.2 0.009976274262 0.01577387460 0.009975537471 0.01577270965 0.009975537469 0.015772709640 0.000000000002 0.000000000001 

 0.3 0.009976544504 0.01577430187 0.009975783546 0.01577309872 0.009975783543 0.015773098720 0.000000000003 0.000000000000 

 0.4 0.009976770396 0.01577465903 0.009976028388 0.01577348586 0.009976028379 0.015773485840 0.000000000009 0.000000000002 

 0.5 0.009976967947 0.01577497137 0.009976271992 0.01577387102 0.009976271978 0.015773871000 0.000000000014 0.000000000002 

30 0.1 0.001652653822 0.002613075133 0.001650714790 0.002610009252 0.001650714791 0.002610009253 0.000000000001 0.000000000001 

 0.2 0.001653771130 0.002614841754 0.001651469111 0.002611201938 0.001651469111 0.002611201938 0.000000000000 0.000000000000 

 0.3 0.001654629188 0.002616198469 0.001652223741 0.002612395113 0.001652223743 0.002612395116 0.000000000002 0.000000000003 

 0.4 0.001655353049 0.002617342998 0.001652978681 0.002613588780 0.001652978685 0.002613588784 0.000000000004 0.000000000004 

 0.5 0.001655991151 0.002618351930 0.001653733933 0.002614782936 0.001653733938 0.002614782944 0.000000000005 0.000000000008 
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Case 2: We have the exaction solution to be 
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numerical solution using EPDTM is given in equation (63) and (64) to be 
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For case 2; at 
,1.0,5,1.0 ===  c
and 1= . Figures 3 and 4 illustrate the graphical representation of 

the exact solutions for 
( ) ,u

and 
( ) ,v

, respectively. Figures 3 and 4 present the solutions for 
( ) ,u

and 
( ) ,v

 as obtained via the Elzaki Projected Differential Transform Method (EPDTM). Table 2 

provides a comparative analysis of the convergence behavior of the fractional solutions derived through 

EPDTM relative to the exact solutions, highlighting the method's precision and reliability. 
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Figure 2. Exact analytical solution of ( ) ,u  for Case 2 of the fractional KdV system. This reference 

solution enables a direct comparison with EPDTM-based numerical results. 

 

Figure 3. Exact analytical solution of ( ) ,v  for Case 2. Used for validating the accuracy of the proposed 

EPDTM approach in solving the coupled system 

http://ojs.upsi.edu.my/index.php/EJSMT/index


EDUCATUM JSMT Vol. 12 Number 1 (2026) 

ISSN 2289-7070 / e-ISSN 2462-2451(1-23) 

https://ejournal.upsi.edu.my/index.php/EJSMT/index 
 
 

19 

 

 

Figure 4. Numerical approximation of ( ) ,u  for Case 2 using EPDTM. The result demonstrates strong 

agreement with the exact solution shown in Figure 5. 

 

Figure 5. Numerical EPDTM solution for ( ) ,v  in Case 2, exhibiting close alignment with the exact 

solution from Figure 6 
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Table 2. Comparative analysis of the convergence behaviour of the fractional solutions to the integer-order 

solutions through EPDTM with the exact solution for case 2 
Case 1 5.0=

 EPDTM (
1=

) Exact (
1=

) 

Error 


 


 

u
 

v
 

u
 

v
 

u
 

v
 

u
 

v
 

-30 0.1 0.01039552283 -0.9990144830 0.01042083034 -0.9990122138 0.01042083033 -0.9990122138 0.00000000000 0.00000000000 

 0.2 0.01038099851 -0.9990157881 0.01041095690 -0.9990130984 0.01041095689 -0.9990130983 0.00000000001 0.00000000001 

 0.3 0.01036987412 -0.9990167893 0.01040109231 -0.9990139824 0.01040109229 -0.9990139821 0.00000000002 0.00000000003 

 0.4 0.01036050966 -0.9990176337 0.01039123656 -0.9990148659 0.01039123653 -0.9990148652 0.00000000003 0.00000000007 

 0.5 0.01035226987 -0.9990183778 0.01038138966 -0.9990157490 0.01038138960 -0.9990157477 0.00000000006 0.00000000013 

0 0.1 0.10481784540 -0.9950116091 0.10494596110 -0.9950122312 0.10494596100 -0.9950122313 0.00000000010 0.00000000001 

 0.2 0.10474410390 -0.9950112550 0.10489608210 -0.9950119856 0.10489608210 -0.9950119858 0.00000000000 0.00000000002 

 0.3 0.10468751400 -0.9950109835 0.10484620070 -0.9950117417 0.10484620080 -0.9950117428 0.00000000010 0.00000000011 

 0.4 0.10463980260 -0.9950107538 0.10479631670 -0.9950114997 0.10479631700 -0.9950115023 0.00000000030 0.00000000006 

 0.5 0.10459776500 -0.9950105504 0.10474643030 -0.9950112592 0.10474643080 -0.9950112643 0.00000000050 0.00000000051 

30 0.1 0.19134903640 -0.9991723250 0.19137029540 -0.9991742654 0.19137029540 -0.9991742654 0.00000000000 0.00000000000 

 0.2 0.19133676780 -0.9991712072 0.19136203430 -0.9991735108 0.19136203430 -0.9991735107 0.00000000000 0.00000000001 

 0.3 0.19132733630 -0.9991703496 0.19135376570 -0.9991727555 0.19135376560 -0.9991727552 0.00000000010 0.00000000003 

 0.4 0.19131937350 -0.9991696267 0.19134548950 -0.9991719999 0.19134548940 -0.9991719992 0.00000000010 0.00000000007 

 0.5 0.19131234920 -0.9991689902 0.19133720590 -0.9991712438 0.19133720560 -0.9991712426 0.00000000030 0.00000000012 

 
The error analysis presented in the tables reveals that the absolute error between the EPDTM solutions and 

the exact solutions remains consistently low across the spatial domain. Notably, at representative points 

such as x=−30, x=0, and x=30, the numerical results maintain high accuracy, with only minor variations 

due to the influence of fractional order dynamics. This demonstrates that EPDTM offers reliable spatial 

convergence and maintains solution fidelity throughout the domain, regardless of distance from the origin. 

                  

CONCLUSION 
In this study, we explored the application of the Elzaki Projected Differential Transform Method (EPDTM) 

to fractional-order nonlinear Korteweg-de Vries (KdV) systems. Through detailed analysis and numerical 

simulations, we demonstrated the effectiveness and applicability of EPDTM in deriving approximate 

solutions for these complex systems. Firstly, we established the general approach of EPDTM for fractional 

partial differential equations, emphasizing its capability to handle both linear and nonlinear operators 

effectively. By applying the method to fractional-order KdV equations, we derived approximate solutions 

that closely approximate the exact solutions derived from theoretical frameworks. Specifically, we 

examined two illustrative cases of fractional-order nonlinear KdV systems. For each case, we conducted 

thorough numerical simulations and compared the results obtained through EPDTM with exact solutions. 

The comparison revealed excellent convergence and accuracy of EPDTM in capturing the behavior of 

fractional-order systems over time and space domains. Our findings underscore the utility of EPDTM in 

addressing challenges posed by fractional derivatives in nonlinear PDEs, offering a robust computational 

tool for researchers and practitioners in various fields of science and engineering. The method's ability to 

provide accurate approximations while maintaining computational efficiency makes it particularly valuable 

for studying complex physical phenomena governed by fractional-order dynamics. 

 

In addition to its numerical accuracy, EPDTM exhibits significant computational efficiency. The 

method produces accurate approximations using only a few terms in the series expansion, avoiding the 

iterative correction steps commonly required by methods such as ADM or VIM. This reduction in 

computational effort translates into faster runtimes and lower memory usage, making EPDTM particularly 

suitable for large-scale or real-time simulations involving fractional-order systems. Looking ahead, further 

research could explore enhancements and extensions of EPDTM, such as incorporating adaptive techniques 
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or exploring its application to other classes of nonlinear PDEs. Such efforts would deepen our understanding 

and broaden the practical applications of EPDTM in modeling and analysis of complex systems. 

In conclusion, this study contributes to advancing the methodology of solving fractional-order PDEs and 

provides a solid foundation for future explorations in this interdisciplinary field. 
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