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Abstract

Neglecting the necessity for normality of residuals leads to failing in meeting the assumptions of error term in
linear regression. Addressing a violation of this assumption requires an appropriate data transformation. The
first objective of this study is to identify a suitable Box-Cox transformation (BCT) family for Likert scale data to
handle non-normal residuals in multiple linear regression (MLR). When confronting with non-normally
distributed MLR residuals, some scholars argue that the ordinary least squares estimation approach, commonly
used in linear regression, consistently produces a reliable estimated value even when the error term deviates
from a normal distribution. Given these conflicting opinions, one asserting that non-normally distributed error
terms result in inaccurate estimates and the other maintains that such deviations do not compromise the
consistency of estimates; thus, the second objective of this experiment is to reaffirm the differences in viewpoint
by comparing the consistency of estimation values in MLR between cases of normal (transformed) and non-
normal (non-transformed) residuals. The study suggested that the optimal BCT occurred at a lambda value 0.5.
This specific lambda value corresponds to a logarithmic transformation, signifying a fundamental shift in Likert
scale data toward a more normalized distribution or residuals. In the context of conflicting opinions regarding
the impact of non-normally distributed error terms on estimates in MLR, this study revealed a significant
difference in the mean of estimated values between the transformed and non-transformed models. The empirical
evidence suggests that non-normally distributed error terms do lead to inconsistency in estimation values in
MLR. Appropriate transformation does contribute to more reliable and interpretable results in MLR.
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1. Introduction

Regression analysis is a statistical method used to analyze the relationship between
quantitative variables, enabling predictions of a dependent variable based on independent
variables. Linear regression, categorized into simple linear regression (SLR) and multiple
linear regression (MLR), is valid only when four key assumptions are met: linearity,
independence, homoscedasticity, and normality of residuals. When these assumptions are
violated, data transformations become necessary to align the data with these requirements.
Transformations improve data normality, equalize variance, and prevent the exclusion of
observations, making the dataset more suitable for analysis (Knief and Forstmeier, 2021).
The Box-Cox transformation (BCT) is a widely used method for addressing assumption
violations in linear regression. It includes logarithmic, square root, and reciprocal
transformations as specific cases. BCT optimizes data normality through a lambda
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parameter (A), which determines the transformation's extent. The optimal A value is
determine by maximizing the log-likelihood function or minimizing residual sum of
squares. This approach is particularly useful for correcting issues like heteroscedasticity or
non-normal errors, thus enhancing the reliability and interpretability of regression models.

Likert scale data, commonly used in social sciences to measure subjective responses like
attitudes or perceptions, presents challenges for linear regression due to its ordinal nature.
Although Likert scales approximate interval-level measurements when well-constructed and
symmetric (Hair et al., 2017), they often fail to meet normality assumptions. Transformations
like BCT can make Likert scale data suitable for MLR by addressing non-normal residuals
while maintaining statistical rigor. The first objective of the study aims to identify to identify
a suitable BCT family method for handling such deviations of non-normal residuals in
Likert scale data.

Second, misconceptions about linear regression often involve misunderstandings about
error term normality. While some argue that ordinary least squares (OLS) estimators remain
consistent despite non-normal errors (Copeland, 1997), others emphasize that such
violations can lead to inaccuracies in hypothesis testing and confidence intervals (Schmidt
and Finan, 2018). By comparing estimation consistency between transformed (normal) and
non-transformed (non-normal) residuals in MLR, this study seeks to clarify these conflicting
viewpoints as the second objectives and contribute to a better understanding of how
transformations impact regression analysis results.

2. Literature Review

In statistical analysis, ensuring that residuals are normally distributed is crucial for accurate
results. A common method to check this assumption is by using a Q-Q plot, where
deviations from a straight line suggest that the data is not normally distributed. Non-normal
data can lead to biased results, inefficient estimates, and incorrect model evaluations (Malik,
2018). Therefore, researchers need to address this issue using either non-parametric tests or
data transformations (Sachin and Us, 2019).

Non-parametric tests provide an alternative when data doesn't meet normality
assumptions. Examples of these tests include the Wilcoxon rank sum test, the Mann-
Whitney test, the Moods Median test, and the Kruskal-Wallis test (Sachin and Us, 2019).
These tests are particularly useful for nominal or ordinal data and for testing hypotheses
that do not involve specific population parameters. However, they are generally less
sensitive and efficient compared to parametric tests when the assumptions for parametric
tests are met (Mitek, 2022; Pek et al., 2018).

Data transformations offer another approach to handle non-normal data by making the
dataset more closely resemble a normal distribution (Pek et al., 2018). Common
transformations include log, square root, and arcsine transformations, which are also known
as monotonic transformations because they apply a mathematical function independently to
each data value, preserving the original data's rank.

Likert scales, which are widely used in survey research, provide a standardized way for
respondents to express their opinions or agreement with various statements (Pimentel,
2019). Researchers often use odd-numbered scales, such as five-, seven-, or nine-point scales,
to capture intermediate responses (Taherdoost, 2019). However, when using Likert scales,
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researchers need to be aware of potential response biases, like acquiescence bias and
extreme response bias, which can affect the validity of the data (Sudrez-Alvarez et al., 2018).
Additionally, the limited range of response options in Likert scales may not fully represent
the complexity of respondents' views, and the resulting data often do not follow a normal
distribution, which violates the assumptions of many parametric tests.

To address these issues, researchers can use the Box-Cox transformation (BCT), a
statistical technique developed by George Box and David Cox. The BCT is used to transform
non-normal dependent variables into a normal shape (Malik, 2018) and is valuable when
fundamental assumptions of a regression model are violated. It offers a family of
transformations, including square root, cube root, natural log, and inverse transformations,
to optimally normalize the data, increase correlation coefficients, and improve the accuracy
of statistical analyses (Malik, 2018).

3. Methodology and Data Collection

Ethics Approval
The Ethical approval for this study has been provided by the UiTM Research Ethics
Committee, and the associated reference number is 500-CK (PJIA/URMI 5/1/1).

Research Design

This study investigates methods for handling non-normal residuals in statistical analyses,
particularly when using Likert scales. Likert scales, frequently used in social science
research, provide standardized response options but often produce data that violates
normality assumptions. To examine this issue, the study employed a simulation approach,
using R to generate data mimicking a 9-point Likert scale (Hair et al., 2017; Malik et al., 2021)
with intentionally non-normal residuals. The research had two primary objectives: first, to
identify a suitable Box-Cox transformation (BCT) to normalize the residuals in multiple
linear regression (MLR) involving the simulated Likert scale data; and second, to compare
the consistency of estimation values between MLR models using the data with and without
the BCT applied. By applying the BCT with different lambda values and assessing normality
via Q-Q plots, the study aimed to recommend best practices for BCT usage with Likert
scales. Applying the BCT helps to determine the optimal transformation for normalizing the
required study variable (Aufa et al., 2018). Next, the impact of non-normality on estimation
was then evaluated using a repeated measures t-test. Figure 1 show the process flow for the
study.
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Figure 1: Process flow
Data Generating Mechanism
The data simulation is performed using R programming. The details command is as in Table

1.

Table 1: Command for data generating

Description Command
Install additional Install.packages ("extraDistr")
distributions

Using the installed package library(extraDistr)

Generate dependent variablel <- rpois(1000, 3)

variable y <- sample(variable[variable >= 1 & variable <= 9], 150, replace=TRUE)
Generate independent variable2 <- rpois(1000, 3)

variables x1 <- sample(variable[variable >= 1 & variable <= 9], 150, replace=TRUE)

x2 <- sample(variable[variable >= 1 & variable <= 9], 150, replace=TRUE)
x3 <- sample(variable[variable >=1 & variable <= 9], 150, replace=TRUE)

Normality checking

The Kolmogorov-Smirnov test is used to check if the residuals are normally distributed. This
test is suitable for larger sample sizes (n>50), while the Shapiro-Wilk test is more appropriate
for smaller samples (<50) (Mishra et al., 2019). The details command is as in Table 2.

Table 2: Command for MLR and normality plot/test

Command Description
model =lm(y~x1+x2+x3) Create a linear model
qqnorm(model $residuals) Create a Q-Q plot

qgline(model $residuals)

ks.test(model $residuals) Test of normality
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Applying the Transformation

This study aims to identify an appropriate BCT family for Likert scale data to address non-
normal residuals in MLR. The BCT involves finding an optimal lambda value between -3
and +3 to transform the dependent variable into a normal distribution (see Table 3 for
common transformations). The optimal lambda is chosen based on how closely it
approximates a normal distribution curve. The R commands for this transformation are in
Table 4.

Table 3: Common Box-Cox transformations

Lambda value Transformed data Lambda value Transformed data
-3 y-3= L 0.5 YOS =Y
Y3
2 L1 1 Y
Y 2= ﬁ
-1 _ 1 2 Y2
vl=n
-0.5 Y_O'S — i 3 Y3
\Y
0 logY

Table 4: Command for Box-Cox family transformation

Description Command

Install package Install.packages("MASS")
Using the installed package library(MASS)

Specify lambda lambda <- 0.5

Transform the dependent variable transformed_y <- if (lambda != 0) (y*lambda - 1) / lambda else log(y)

Comparing the Estimation Value

To address conflicting views on the impact of non-normal residuals on linear regression
estimates, this study used a repeated measures t-test. This test compares the mean
estimation values from multiple linear regression (MLR) models with normal (transformed)
and non-normal (non-transformed) residuals, assessing whether the transformation
significantly alters the model's estimations. R commands for the repeated measures t-test are
provided in Table 5.

Table 5: Command for repeated measures T-test

Description Command

Create data predicted value data$predicted=predict(model)
datasettransform$predicted <- predict(model_transformed)

Compare model using paired t-test  t.test(data$predicted, datasettransform$squared_predicted, paired=T)

4. Results

Box-Cox Transformation on Non-normal Residuals

The first objective of this study is to identify an appropriate Box-Cox transformation (BCT)
family for Likert scale data, specifically to address non-normal residuals in Multiple Linear
Regression (MLR). Various Box-Cox transformation families, using different lambda values,
have been tested on Likert scale data to address the issue of non-normal residuals in the
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context of multiple linear regression. The suitability of lambda values for normalizing
residuals through BCT is determined using the Kolmogorov-Smirnov test and Q-Q plot.

Table 6 displays the results of the Kolmogorov-Smirnov test for the simulated data, when
no transformation performed (A=1). While Table 7 presents the results of the Kolmogorov-
Smirnov test, where the D-statistic measures the maximum difference between the
cumulative distribution functions of two datasets. This test is employed to compare the
distribution of residuals to a theoretical normal distribution. A lower D-statistic and a higher
p-value are favorable, indicating that observed residuals closely align with the assumed
normal distribution. Conversely, a higher D-statistic and a lower p-value suggest a
significant disparity between observed and expected distributions. A large D-statistic
implies rejection of normality, while large p-values indicate normally distributed data.
Among all the models compared, Model 6 (A=0.5) is identified as the optimal transformed
model. In Model 6, the D-statistic value is 0.044166, which is smaller than the significance
level (¢=0.05) and is the smallest among all models. Additionally, it boasts the highest p-
value of 0.9316. These findings provide strong evidence supporting the notion that residuals
in Model 6 follow a normal distribution. The Q-Q plot for Model 6 further reinforces this
conclusion by displaying points along a straight line, indicating a normal distribution for the
obtained residuals.

Table 6: Kolmogorov-Smirnov normality test and Q-Q plot on non-transformed model

Kolmogorov-Smirnov test Normal Q-Q Plot
D-statistic P-value
Normal Q-Q Plot
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Table 7: Kolmogorov-Smirnov normality test and Q-Q plot on BCT

Model Lambda Kolmogorov-Smirnov test Normal Q-Q Plot
value D-statistic P-value
Normal Q-Q Plot
1 -3 0.45858 <2.2e-16
8 o |
E o] 7
§ 5-
g _
T o
[42] . Oooamﬁxzm
c 1le ©°¢
! I I I I I
2 1 0 1 2

Theoretical Quantiles

33



Experimenting The Box-Cox Family Transformation on Likert Scale Data for Non-Normal Residuals in Linear Regression

Table 7 (Continue): Kolmogorov-Smirnov normality test and Q-Q plot on BCT

Model Lambda Kolmogorov-Smirnov test Normal Q-Q Plot
value D-statistic P-value
2 -2 0.43601 <2.2e-16
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Model Lambda Kolmogorov-Smirnov test Normal Q-Q Plot
value D-statistic P-value
6 0.5 0.044166 0.9316
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Consistency of Estimation Values in MLR Between Normal and Non-normal Residuals Cases

The second objective of this experiment is to assess the consistency of estimation values in
Multiple Linear Regression (MLR) when comparing cases with normal (transformed) and
non-normal (non-transformed) residuals. The repeated measures t-test is a reliable method
for comparing the mean difference in estimated values between the transformed and non-
transformed models. According to Table 8, the p-value being less than the significance level
(a=0.05) provides sufficient evidence to conclude a significant difference in the mean of
estimated values between the transformed and non-transformed models. Tables 9 and 10
present the regression coefficients for the transformed (Model 6) and non-transformed
models, respectively. Additionally, Table 11 displays the standard error and Analysis of
Variance (ANOVA) values for both models. The transformed model exhibits a smaller
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standard error value of 0.882 compared to the non-transformed model (1.558). Moreover, the
transformed model has a slightly larger ANOVA value than the non-transformed model,
thereby increasing the probability (lower p-value) of being considered a significant model.

Table 8: Result of repeated measure T-test

9 fid Int 1
T P-value 95 % Confidence Interva Mean difference
Lower Upper

55.659 < 0.00000000000000022 0.982451 1.054777 1.018614

Table 9: Coefficients of non-transform model

Parameter Estimate Standard Error T-value Sign Confidence Interval
Lower Upper
Intercept 3.142108 0.418085 7.515 0.0000 2.3158 3.9684
X -0.002058 0.076846 -0.027 0.9787 -0.1539 0.1498
X2 -0.132174 0.080415 -1.644 0.1024 -0.2911 0.0268
X3 -0.171159 0.076837 -2.228 0.0274 -0.3230 -0.0193

Table 10: Coefficients of transform model

Parameter Estimate Standard T-value Sign Confidence Interval
Error Lower Upper

Intercept 1.977671 0.236697 8.355 0.0000 1.5099 2.4455
X1 0.009095 0.043506 0.209 0.8347 -0.0769 0.0951

X2 -0.080215 0.045527 -1.762 0.0802 -0.1702 0.0098
X3 -0.096096 0.043501 -2.209 0.0287 -0.1821 -0.0101

Table 11: Significant model between best transformer and non-transform model

Statisti Model

tatistic Transform Non-transform
Lambda value 0.5 1

Standard Error 0.882 1.558

F-test 2.701 2.621

P-value 0.04787 0.05300

5. Conclusions and Recommendations

This study aimed to address issues with non-normal residuals in multiple linear regression
(MLR) using Likert scale data, with two primary objectives: identifying the best Box-Cox
transformation (BCT) family and evaluating the consistency of estimation values in MLR
with and without data transformation. Analysis revealed that a lambda value of 0.5,
corresponding to a square root transformation, was optimal for normalizing the Likert scale
data, supported by low D-statistics and a p-value greater than 0.05. This suggests that using
a square root transformation with lambda 0.5 is an effective way to improve residual
normality and enable more robust MLR studies.

The study found a significant difference in the mean of estimated values between
transformed and non-transformed models, indicating that non-normally distributed error
terms in MLR do lead to inconsistency in estimation values. The empirical evidence
demonstrates that appropriate transformation contributes to more reliable and interpretable
results in MLR.
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To improve the study's practical application, it's recommended to test various
transformation methods beyond just the Box-Cox transformation and to incorporate real-
world Likert scale datasets alongside simulation data. By experimenting with different
techniques and parameters and comparing results, researchers can gain a more nuanced
understanding of how transformations impact residual normality. Furthermore, the
utilization of real data not only confirms the transformation's effectiveness but also assures
that the conclusions are directly applicable to realistic research situations.
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