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Abstract

Amid the growing imperative for digital transformation in higher education, the readiness of academic faculty to
adopt data analytics tools remains underexplored, particularly in the Chinese context. This study investigates the
influence of demographic and professional characteristics on faculty readiness for big data analytics (BDA)
across International Scholarly Exchange Curriculum (ISEC) and non-ISEC institutions. The primary objective is
to examine differences in BDA readiness across variables such as ISEC affiliation, gender, professional rank, and
educational background. Using a non-experimental causal-comparative design, data were collected from 154
Sfull-time faculty members across 10 Chinese universities. A modified DELTA+ model served as the assessment
framework, covering six key dimensions of analytics readiness: data, enterprise, leadership, targets, technology,
and analysts. Statistical analysis using t-tests and two-way ANOVA revealed that while most readiness dimensions
did not significantly differ, technology readiness was significantly higher among non-ISEC faculty. Gender, rank,
and education showed no main effects, though a significant interaction between ISEC status and education was
observed. These findings underscore the complexity of technological readiness and suggest that institutional
affiliation and educational background interact in shaping analytics capabilities. The study calls for targeted
institutional policies and further research to refine professional development strategies in higher education.
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1. Introduction

In the contemporary landscape of higher education, digital transformation has emerged as a
critical catalyst for institutional evolution and pedagogical innovation (Daniel, 2017). The
COVID-19 pandemic precipitated an unprecedented technological acceleration, compelling
educational institutions to rapidly recalibrate their technological infrastructures and
pedagogical methodologies (Daniel, 2020; Bao, 2020).

The International Scholarly Exchange Curriculum (ISEC), strategically positioned within
China's educational modernization framework, represents a sophisticated institutional
transformation model. Affiliated with the China Scholarship Council (CSC) and embedded in
the "Education Modernization 2035 Plan," ISEC strategically targets local and provincial
higher education institutions. Unlike traditional educational approaches, ISEC adopts a
comprehensive internationalization strategy that emphasizes systematic professional
development through structured training and rigorous assessment protocols.

Theoretical perspectives on technological adoption provide essential conceptual
foundations for understanding this transformative process. The Unified Theory of Acceptance
and Use of Technology (UTAUT) framework elucidates the complex psychological
mechanisms underlying technological integration (Venkatesh et al., 2012). Empirical research
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consistently demonstrates that individual differences—particularly age, gender, and
professional rank—significantly moderate technology acceptance rates (Compeau and
Higgins, 1995; Gibson, 2017).

Building upon Gibson's (2017) insights into technological competence, this study
cautiously explores the potential variations in faculty readiness for data analytics tools.
Through a non-experimental causal-comparative design involving 154 faculty members
across 10 Chinese universities, this study aims to tentatively investigate the interactions
between demographic factors and technological preparedness. This research seeks to develop
preliminary insights into the mechanisms of technological adoption, faculty development
strategies, and the complex relationships between individual characteristics and technological
readiness.

Methodologically, a modified DELTA+ assessment instrument was leveraged,
characterized by enhanced validity and reliability, to capture the multidimensional nature of
technological readiness. Our mixed-methods approach integrates quantitative analysis with
contextual qualitative insights, providing a comprehensive understanding of technological
adoption dynamics.

The study's contributions tentatively extend beyond traditional academic discourse,
offering preliminary attempt into potential interventions across multiple domains. By
carefully examining faculty training strategies, cross-cultural learning environment design,
and potential pathways for digital transformation in higher education, our research modestly
bridges theoretical frameworks with empirical evidence. While acknowledging the inherent
limitations of our study, we aim to contribute to the emerging scholarship on technological
integration in global higher education, with a focused exploration of the complex Chinese
educational context. Our findings suggest potential mechanisms for understanding
technological adoption, recognizing the need for further research to validate and expand these
initial observations.

2. Digital Transformation in Higher Education and the Theoretical Synthesis
Framework

The landscape of digital transformation in higher education represents a complex,
multifaceted phenomenon that transcends simplistic technological implementation.
Arviansyah et al. (2024) critically illuminates this transformation as a profound
reconfiguration of institutional logics and practice paradigms, challenging traditional
conceptualizations of technological innovation. The Technology-Organization-Environment
(TOE) framework emerges as a pivotal theoretical lens, with Baker (2011) systematically
articulating its foundations and Hiran and Henten (2020) empirically demonstrating the
contextual complexity of technological integration in educational settings.

Theoretical perspectives from innovation diffusion and critical technology studies provide
nuanced insights into this transformative process. Rogers' (1962) seminal work on innovation
diffusion reveals the complex mechanisms of technological propagation. Simultaneously,
Bijker (1997) and Feenberg (2012) challenge technological determinism, conceptualizing
technological artifacts as socially constructed entities embedded with power relations and
cultural meanings. Celik (2024) synthesizes these perspectives, demonstrating how
technological innovation simultaneously shapes and is shaped by organizational practices,
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with Markus (2004) and Orlikowski (2000) particularly emphasizing the dialectical
relationship between technological systems and human agency.

The critical examination of digital transformation extends beyond mere technological
implementation, revealing a complex interplay of social, organizational, and technological
dynamics. Noble's (2017) historical sociological analysis and Selwyn's (2019) critical
investigation of artificial intelligence in education underscore the profound institutional
implications of technological innovation. Greenhalgh et al. (2004) provide a systematic review
of innovation diffusion, while Chatterjee et al. (2024) offer a sophisticated framework
exploring the intricate relationships between technological capabilities, organizational
turbulence, and management support.

Ultimately, digital transformation in higher education emerges as a continuous process of
institutional reimagination. It demands a sophisticated theoretical approach that transcends
technological instrumentalism, focusing instead on the complex interplay between
technological artifacts, organizational practices, and human agency. The theoretical synthesis
reveals this transformation not as a predetermined trajectory, but as a dynamic, contextually
embedded process of institutional reconfiguration that requires continuous critical reflection
and adaptive theoretical frameworks. This comprehensive analysis illuminates digital
transformation as a multidimensional phenomenon that fundamentally challenges existing
institutional logics. It represents a critical juncture where technological potential, institutional
constraints, and social dynamics converge, requiring researchers and institutional leaders to
develop nuanced, flexible theoretical frameworks for understanding technological change in
higher education.

Recognizing the complexity of digital transformation in higher education, five theoretical
frameworks for digital transformation were analyzed: DAVCM, DACM, DAMM, DALM, and
DELTA Model. Each model reveals distinct limitations: DAVCM oversimplifies complexity,
DACM lacks empirical support, DAMM neglects technological dynamics, and DALM remains
overly abstract (Curry, 2016; Kiraly and Zdonek, 2020). Adopting Davenport et al.'s (2010)
DELTA model, this study leverages a comprehensive framework integrating data, enterprise,
leadership, technology, targets, and analysts to ensure strategic alignment with institutional
transformation goals.

Table 1: Comparative analysis of data analysis models

Model Description Strengths Weaknesses

Data Analysis Value Describes the fulllifecycle Helps understand the Over-simplifies, ignore

Chain Model process of data analysis purpose, scope, methods of environmental influences

(DAVCM) data analysis

Data Analysis Assesses data analysis Provides a comprehensive Lacks empirical support,

Capability Model capabilities and capability framework and ignores different stages

(DACM) prerequisites assessment tools

Data Analysis Maturity =~ Describes maturity stages Provides a clear Overly idealized, ignores

Model (DAMM) of data analysis development path dynamism

Data Analysis Lifecycle Provides concepts, Helps design and execute Overly complex and

Model (DALM) principles, methods, and data analysis projects abstract, with  low
tools for data analysis feasibility

DELTA Model Evaluates data, Comprehensive, practical, May overlook some
enterprise,  leadership, adaptive, suitable for higher analytical details

targets, analysts

education

Note: The table presented above has been compiled by the author based on a synthesis of relevant literature and data.
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3. Methodology

Employing a causal-comparative research design recommended by Campbell and Stanley
(1963), this study systematically explored differences in Big Data Analytics (BDA) readiness
between ISEC and non-ISEC faculty without direct variable manipulation, enabling precise
identification of significant group variations (Proudfoot et al., 2018). The research was
theoretically grounded in the DELTA+ model (Davenport et al., 2010), which assesses BDA
readiness across six critical dimensions: data, enterprise, leadership, targets, technology, and
analysts. These dimensions provide a nuanced framework for understanding technological
readiness in educational contexts.

Table 2: The six elements of the big data readiness assessment survey

Element Element Description Sample Question

Data Data is the most fundamental component of We have access to wvery large,
a big-data setup and is a vital determinant of unstructured, or fast-moving data
the success of a big-data initiative. Data can for analysis.
be obtained from external or internal sources
and can be structured or unstructured.

Enterprise An  enterprise approach to big data is crucial Weemploya combination of big data
to achieving big data readiness and maturity. and traditional analytics approaches
It entails wunifying a big-data initiative across to achieve our organization’s goals.
the entire organization.

Leadership ~ Leaders in big-data-ready institutions should Our senior executives regularly
be passionate and committed to adopting and consider the opportunities that big
implementing the technologies. In addition, data and analytics might bring to
they must have a disruptive mindset, meaning that they are our business.
ready to disrupt the status quo and try new, risky approaches
and are also willing to experiment with data on a large scale.

Targets Targets imply that an institution must We prioritize our big data efforts to
identify where big-data analytics will be high-value opportunities to
applied within the institution differentiate  us  from  our

competitors.

Technology =~ Technology aids in the management and  We have explored or adopted parallel
analysis of data. Big data entails large computing  approaches  (e.g.,
volumes  of  structured and  unstructured data Hadoop)
and the relevant technologies that enable to big data processing.
data processing and analysis.

Analysts Analysts  represent the  human side of big We have a sufficient number of

data and are crucial to the initiative's success. Adopting and
deriving meaningful information from big data requires a
literate workforce and data scientists focusing specifically on
data operations.

capable data scientists and analytics
professionals  to
analytical objectives

achieve  our

Note: Reprinted from Big data at work: Dispelling the myths, uncovering the opportunities, by Thomas Davenport. Copyright 2014 by
Harvard Business Review Press.

Four research questions guided the investigation:
- RQ1: Are there significant differences in BDA readiness elements between ISEC and non-

ISEC faculty?

- RQ2: Are there significant differences in BDA readiness based on gender?
- RQ3: Are there significant differences in BDA readiness based on professional rank?
- RQ4: Are there significant differences in BDA readiness based on educational background?
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Sample size determination utilized G*Power 3.1.9.7, establishing parameters of a medium
effect size (0.5), significance level of 0.05, and statistical power of 0.80. This approach yielded
a minimum requirement of 64 participants per group, with the study ultimately recruiting 160
participants to ensure robust analytical depth. The sampling strategy employed stratified
random sampling, targeting full-time faculty members across multiple Chinese universities.
Careful selection criteria ensured representation from ISEC and non-ISEC programs,
maintaining methodological integrity.

The measurement instrument—a modified DELTA+ BDA Readiness Assessment—utilized
a 5-point Likert scale. Rigorous validation processes, including expert panel review, yielded
a Cronbach's a of 0.87, demonstrating strong instrument reliability. Statistical analyses
integrated descriptive and inferential techniques, including independent samples t-tests and
one-way ANOVA. These methods enabled systematic examination of potential differences in
BDA readiness across demographic and professional characteristic:

4. Data Analysis

Participants’ Demographic Profiles

This section demonstrates participant demographic profiles based on the survey responses
from 154 faculty at 10 ISEC member universities in China. Participants voluntarily provided
information on name, gender, age, institution, teaching experience, rank, education,
discipline, ISEC participation, and faculty type. Most participants were from Inner Mongolia
(n =159, 38.3%), followed by Hebei Province (n =21, 13.6%), Jiangxi Province (n = 18, 11.7%),
Guizhou Province (n = 15, 9.7%), Fujian Province (n = 14, 9.1%), Liaoning Province (n = 14,
9.1%) and Guangdong Province (n = 13, 8.4%). In terms of gender, there were more males (n
= 81, 52.6%) than females (n = 73, 47.7%). For professional ranks, most were lecturers (n=83,
53.9%), followed by associate professors (n=>51, 33.1%), professors (n =14, 9.1%), and teaching
assistants (n =6, 3.9%). Regarding education background, most held master's degrees (n =114,
74%), followed by doctoral degrees (n =33, 21.4%), and bachelor's degrees (n =7, 4.5%).

Descriptive Statistics of Variables

Descriptive statistics were calculated for the DELTTA readiness scores (see Table 7). The
composite score combining all DELTTA subscales was lower for ISEC (M = 3.52, SD = .83)
versus non-ISEC faculty (M =3.71, SD = .83). The minimum score was 1 for ISEC and 1.73 for
non-ISEC faculty. Median scores were 3.67 and 3.73 for ISEC and non-ISEC groups
respectively. The individual subscales of the BDA adoption readiness mean scores are
displayed in Table 8. The mean scores for each of the elements for the ISEC and non-ISEC
faculty helped to address RQ2.

Table 3: Overall BDA readiness scores of ISEC and non-ISEC faculty

Overall BDA n Range Minimum  Maximum  Mean SD
ISEC 77 4 1 5 3.52 .83
Non-ISEC 77 3.27 1.73 5 3.71 .83

Table 4: Individual BDA readiness score of ISEC and non-ISEC faculty
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Elements Group N Range Min Max Mean SD
Data ISEC 77 4 1 5 3.70 11
non-ISEC 77 4 1 5 3.72 13
Enterprise ISEC 77 4 1 5 3.59 .10
non-ISEC 77 4 1 5 3.61 13
Leadership ISEC 77 4 1 5 3.42 12
non-ISEC 77 4 1 5 3.74 12
Target ISEC 77 4 1 5 3.59 11
non-ISEC 77 4 1.6 5 3.71 12
Technology ISEC 77 4 1 5 3.40 A1
non-ISEC 77 4 1.6 5 3.72 11
Analysts ISEC 77 4 1 5 3.45 12
non-ISEC 77 4 1 5 3.76 12

Note: The Likert scale from the DELTTA survey corresponds to 1= Analytically Impaired, 2 = Localized Analytics, 3 = Analytical
Aspirations, 4 = Analytical Companies, and 5 = Analytical Competitors (Davenport, 2014; Davenport et al., 2010)

The Likert scale from the DELTTA survey reflects the stages of analytics maturity and
competitiveness of different enterprises. For a detailed explanation, please refer to the
DELTTA Plus Model & Five Stages of Analytics Maturity: A Primer (Davenport, 2014;
Davenport et al., 2010), a research report by the International Institute for Analytics (IIA)
that introduced the model and method for assessing and improving analytics maturity.

The BDA readiness is delineated into six distinct elements in Table 4, showing the
range, minimum, maximum, mean, and standard deviations of the ISEC and non-ISEC
groups. For each element of data, enterprise, leadership, target, technology, and analysts,
the non-ISEC faculty group had marginally higher scores than the ISEC group. The
smallest difference was in the data element, with ISEC (M = 3.7, SD = .11) and non-ISEC
(M =3.72, SD = .13) demonstrating similar readiness. The largest gap was in the leadership
element, where non-ISEC faculty (M =3.74, SD =.12) scored considerably higher than ISEC
faculty (M =3.42, SD = .12).

Overall, Tables 3 and 4 reveal slightly higher levels of big data analytics readiness
among non-ISEC faculty compared to the ISEC faculty across both the composite and
individual element scores. The descriptive statistics highlight the readiness areas with
room for improvement in the ISEC faculty to match or exceed their non-ISEC peers.

Independent t-Test Results of RQ1
Research Question 1 (RQ1) was aimed to examine if a statistically significant difference
exists in the readiness levels for BDA across specific elements - data, enterprise,
leadership, targets, technology, and analysts - between the ISEC and the non-ISEC faculty.
Identifying these differences is crucial for understanding how ISEC affiliation might
influence an educator's proficiency in various BDA components, informing targeted
enhancement of BDA capabilities.

RQ1: Is there a statistically significant difference between the ISEC and non-ISEC
faculty, and BDA readiness elements individually (data, enterprise, leadership, targets,
technology, and analysts)?

Table 5: Independent samples t-test of BDA scores for the ISEC and non-ISEC faculty
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Group Mean SD Mean t Sig. Cohend  95% CI
difference Lower  Upper

Overall ISEC 3.52 .83 -19 -1.39 17 23 -45 .08
non-ISEC 3.71 .83

Data ISEC 3.70 97 -.03 -15 88 .02 -36 -31
non-ISEC 3.73 1.12

Enterprise*  ISEC 3.60 92 -.02 -11 91 .02 -35 31
non-ISEC 3.62 1.13

Leadership  ISEC 3.42 1.03 -.32 -1.93 .06 .31 -.65 .01
non-ISEC 3.74 1.02

Target ISEC 3.60 1.01 -12 -76 45 12 -.45 2
non-ISEC 3.72 1.03

Technology  ISEC 3.40 1 -.32 204 .04 32 -.64 -.01
non-ISEC 3.72 .97

Analysts ISEC 3.45 1.05 -31 -1.79 .08 .29 -.65 .03
non-ISEC 3.76 1.1

Notes: N=154 (77 for each ISEC and non-ISEC group. * Values for data subscale are from Welch t-test (equal variances not assumed) for t-test
for equality of means.

Research Question 1 examined whether there were statistically significant differences in big
data analytics (BDA) readiness between the ISEC and non-ISEC faculty across six individual
elements: data (ISEC: M =3.70, SD = 0.97; non-ISEC: M =3.73, SD = 1.12), enterprise (ISEC: M
= 3.60, SD = 0.92; non-ISEC: M = 3.62, SD = 1.13), leadership (ISEC: M = 3.42, SD = 1.03; non-
ISEC: M = 3.74, SD = 1.02), targets (ISEC: M = 3.60, SD = 1.01; non-ISEC: M = 3.72, SD = 1.03),
technology (ISEC: M = 3.40, SD = 1.00; non-ISEC: M =3.72, SD = 0.97), and analysts (ISEC: M =
3.45, SD = 1.05; non-ISEC: M = 3.76, SD = 1.10). Independent samples t-tests were conducted
to test sets of directional hypotheses.

The t-test results indicated no significant differences between the ISEC and non-ISEC
faculty for data readiness, enterprise readiness, targets readiness, or analysts readiness, with
all p values >.05. However, there was a significant difference for technology readiness, t (152)
= -2.04, p = .04, with non-ISEC faculty scoring higher than the ISEC faculty. The mean
differences ranged from -0.03 (data) to -0.32 (leadership), with corresponding small to
medium Cohen's d effect sizes from 0.02 to 0.32. The 95% confidence intervals for the non-
significant readiness elements all overlapped zero, further indicating a lack of significant
differences. For technology readiness, the predominantly negative 95% CI suggests the
direction of the significant difference favoring non-ISEC faculty.

Two-way ANOVA Analysis Results of RQ2
RQ2: Is there a statistically significant difference in BDA Readiness between ISEC
faculty and non-ISEC faculty based on gender?

Table 6: Descriptive statistics of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on

gender
Group Gender Mean Std. Deviation N
ISEC Male 3.49 0.80 37
Female 3.56 0.87 40
Total 3.53 0.83 77
Non-ISEC Male 3.84 0.79 44
Female 3.54 0.88 33
Total 3.71 0.84 77
Total Male 3.68 0.81 81
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Female 3.55 0.87 73
Total 3.62 0.84 154

Table 7: Two-way ANOVA of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on

gender
Source F Sig. Partial Eta Squared
ISEC Non-ISEC 1.517 0.22 0.01
Gender 0.723 0.396 0.005
ISEC Non-ISEC*Gender 1.95 0.165 0.013

*Indicates interaction effect

Research Question 2 (RQ2) examined whether there was a statistically significant difference
in overall big data analytics BDA readiness between ISEC and non-ISEC faculty based on
gender. A two-way ANOVA was conducted with two between-subjects factors - ISEC status
(ISEC vs non-ISEC) and gender (male vs female).

The descriptive statistics showed that male faculty in the non-ISEC group had the highest
overall BDA readiness score (M = 3.84, SD =0.79, n = 44), while male faculty in the ISEC group
had the lowest score (M = 3.49, SD = 0.80, n = 37).

Levene's test verified the assumption of homogeneity of variances was met, F (3, 150) =
0.095, p = .963. The two-way ANOVA results indicated no significant main effect for ISEC
status, F (1, 150) = 1.517, p = .22, partial n2 = .010, or for gender, F (1, 150) = 0.723, p = .396,
partial n2 = .005. The interaction effect between ISEC status and gender was also not
significant, F (1, 150) = 1.95, p = .165, partial n2 =.013.

In summary, the findings for RQ3 failed to reject the null hypothesis as there were no
significant differences in overall BDA readiness between ISEC and non-ISEC faculty when
accounting for gender. This signifies that gender may not be a powerful factor influencing
BDA readiness levels in this sample. Further research with larger sample sizes may be
warranted to fully examine potential interaction effects.

Two-way ANOVA Analysis Results of RQ3
RQ3: Is there a statistically significant difference in BDA Readiness between the ISEC and non-
ISEC faculty based on professional rank?

Table 8: Descriptive statistics of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on
professional rank

Groups Prank Mean Std. Deviation N
ISEC TA 3.27 0.28 2
Lecturer 3.44 0.83 37
Associate Prof 3.67 0.95 28
Prof 3.52 0.56 10
Total 3.53 0.83 77
Non-ISEC TA 3.47 0.87 4
Lecturer 3.83 0.79 46
Associate Prof 3.52 0.95 23
Prof 3.75 0.65 4
Total 3.71 0.84 77
Total TA 3.40 0.69 6
Lecturer 3.66 0.82 83
Associate Prof 3.60 0.95 51
Prof 3.59 0.57 14
Total 3.62 0.84 154
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Table 9: Two-way ANOVA of overall DELTTA BDA scores for ISEC and non-ISEC faculty Based on
professional rank

Source F Sig. Partial Eta Squared
ISEC Non-ISEC 517 473 .004
Professional Rank 1.183 908 .004
ISEC Non-ISEC*ProfRank 1.081 .359 .022

*Indicates interaction effect

Estimated Marginal Means of TotalDeltta

250 ISECID
ISEC

;\ —nenlSEC

Estimated Marginal Means

TA Lecturer Associate Prof Prof

Prank
Figure 1: Profile plot based on professional rank

Research Question 3 examined whether there were significant differences in big data analytics
(BDA) readiness between ISEC and non-ISEC faculty based on professional rank (teaching
assistant, lecturer, associate professor, professor). A two-way ANOVA was conducted with
two between-subjects factors - ISEC status and professional rank.

The descriptive statistics showed that mean BDA readiness scores were relatively similar
across professional ranks, ranging from 3.40 (teaching assistants) to 3.59 (professors) in the
total sample. Amongst ISEC faculty, associate professors had the highest readiness (M = 3.67,
SD = .95, n = 28), while teaching assistants had the lowest (M = 3.27, SD = .28, n = 2). For non-
ISEC faculty, lecturers showed the highest readiness (M = 3.83, SD = .79, n = 4), and teaching
assistants had the lowest scores (M = 3.47, SD = .87, n = 4).

Levene’s test verified that the assumption of homogeneity of variances was met, F (7, 146)
=1.067, p = .388. The two-way ANOVA revealed no significant main effect for ISEC status, F
(1, 146) = 0.517, p = .473, partial n2 = .004, indicating no significant difference in overall BDA
readiness between ISEC (M = 3.53, SD = 0.83) and non-ISEC (M =3.71, SD = 0.83) faculty. There
was also no significant main effect for professional rank, F (3, 146) = 0.183, p = .908, partial )2
= .004, suggesting no significant differences in BDA readiness across the ranks. Furthermore,
the interaction between ISEC status and professional rank was non-significant, F (3, 146) =
1.081, p = .359, partial n2 = .022, signifying that the effect of ISEC status did not differ across
ranks.

Since the ANOVA results were not significant, that is, the p-values of the main effects or
interaction effects were all greater than the significance level (usually 0.05), there was no need
to conduct a post hoc test, because the purpose of these comparisons was to find out which
groups had significant differences, and the ANOVA had already shown that there were no
significant differences. Performing post hoc multiple comparisons might increase the risk of
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Type I error, which is rejecting the null hypothesis erroneously, thinking that there were
differences.

The profile plot (Figure 1) also displayed no significant interaction effect between ISEC
status and professional rank. The plot showed relatively parallel lines for ISEC and non-ISEC
faculty groups across the ranks of teaching assistant, lecturer, associate professor, and
professor. The lack of crossover interaction effects further supports the non-significant
difference in BDA readiness between ISEC and non-ISEC across professional ranks.

The results for RQ3 failed to reject the null hypothesis, as the two-way ANOVA found no
statistically significant differences in overall BDA readiness between ISEC and non-ISEC
faculty based on professional rank. These findings indicate professional rank may not be a
powerful variable influencing BDA readiness among this particular faculty sample. In
addition, further examination using Cohen’s d effect sizes revealed no potential practical
differences between some ranks. In summary, the non-significant statistical findings should
be interpreted cautiously, as the small and imbalanced rank group sizes likely limited
statistical power.

Two-way ANOVA Analysis Results of RQ4
RQ4: Is there a statistically significant difference in BDA Readiness between the ISEC and non-
ISEC faculty based on their educational background?

Table 10: Descriptive statistics of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on
educational background

Group Edu background Mean Std. Deviation N
ISEC BA 3.32 1.70 3
Master 3.79 0.60 48
Ph.D. 3.08 0.93 26
Total 3.53 0.83 77
Non-ISEC BA 3.43 - 1
Master 3.66 0.84 54
Ph.D. 3.87 0.83 22
Total 3.71 0.84 77
Total BA 3.35 1.39 4
Master 3.72 0.74 102
Ph.D. 3.44 0.96 48
Total 3.62 0.84 154

Note: Categories with one sample do not have a standard deviation.

Table 11: Two-way ANOVA of overall DELTTA BDA scores for ISEC and non-ISEC faculty Based on
educational background

Source F Sig. Partial Eta Squared
ISEC Non-ISEC .624 431 .004
Edu Background 1.695 187 .022
ISEC Non-ISEC*EduBack  5.261 .006 .066

*Indicates interaction effect

Table 12: Levene's test of equality of error variances for BDA readiness by ISEC groups and educational
background

58



Journal of Contemporary Issues and Thought
ISSN 2232-0032/ e-ISSN 0128-0481/ Vol 15, Issue 2, 2025 (49-62)

Levene's Test of Equality of Error Variances*?

Levene Statistic df1 df2 Sig.
TotalDeltta Based on Mean 2.969 4 148 .021
Based on Median 1.923 4 148 110
Based on Median and with  1.923 4 83.521 114
adjusted df
Based on trimmed mean 2.876 4 148 .025

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
a. Dependent variable: TotalDeltta
b. Design: Intercept + ISECID + eduback + ISECID * eduback

Research Question 4 examined whether there were significant differences in big data analytics
(BDA) readiness between ISEC and non-ISEC faculty based on educational background (BA,
Master’s, Ph.D.). A two-way ANOVA was conducted with two between-subjects factors —
ISEC status and education level.

The descriptive statistics showed educational background had varying effects on mean
BDA readiness scores for ISEC versus non-ISEC groups. Amongst ISEC faculty, those with a
Master’s degree had the highest readiness (M =3.79, SD = .60, n =48), while Ph.D. holders had
the lowest (M = 3.08, SD = .93, n = 26). For non-ISEC faculty, Ph.D. holders displayed the
highest readiness (M = 3.87, SD = .83, n = 22), compared to Master’s (M = 3.66, SD = .84, n = 54)
and BA (M=343,n=1).

Levene’s test showed the assumption of homogeneity of variances was violated, F (4, 148)
=2.969, p = .021. The two-way ANOVA revealed no significant main effect for ISEC status, F
(1, 148) = 0.624, p = .431, partial 12 = .004. There was also no significant main effect for
education level, F (2, 148) = 1.695, p =.187, partial )2 =.022. However, a significant interaction
effect was found between ISEC status and education level, F (2, 148) = 5.261, p = .006, partial
n2 = .066. Since Levene's test showed that the assumption of homogeneity of variance was
violated, a more stringent significance level (.01) was adopted to evaluate the ANOVA results,
to reduce the risk of type I error, the p-value was still =.021. Therefore, the two-way ANOVA
on research question 5 was discontinued.

5. Discussion and Conclusions

The investigation of Big Data Analytics (BDA) readiness among ISEC and non-ISEC faculty
reveals nuanced insights into technological preparedness across multiple dimensions. While
most BDA readiness elements showed no statistically significant differences, technology
readiness emerged as a critical differentiating factor between ISEC and non-ISEC faculty.
Non-ISEC faculty demonstrated significantly higher technology readiness (t(152) = -2.04, p =
0.04), challenging conventional assumptions about technological capabilities across academic
disciplines. This finding aligns with Tasmin and Huey's (2020) research, which emphasizes
that BDA readiness is not merely about technological infrastructure but involves complex
factors such as relative advantage, compatibility, and organizational support. The finding
suggests that technological competence in the digital era transcends generational boundaries,
indicating a more nuanced relationship between professional experience and technological
adaptability.

Gender analysis revealed no significant differences in BDA readiness, highlighting the
importance of moving beyond simplistic demographic categorizations. While Al-Rahmi et al.
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(2019) found gender to be a significant moderator in technology acceptance in a Saudi Arabian
context, this study's results diverge. As Connell (2013) argues, gender is a complex social
structure formed within specific cultural contexts and should not be viewed as a singular,
static attribute. The findings underscore the need for intersectional approaches that consider
gender's interaction with other social factors like education, work experience, and self-
efficacy.

Professional rank did not significantly impact BDA readiness, suggesting that
technological competence is more closely linked to individual motivation, institutional
culture, and continuous learning opportunities. Adrian et al. (2017) had hypothesized that
higher-ranked faculty might be more likely to adopt BDA due to greater knowledge and
resources. However, this study's results caution against such linear assumptions. As Morley
et al. (2020) suggest, research should adopt inclusive perspectives that value diverse expertise
across academic hierarchies and career stages. This study extends the DELTA+ model by
revealing the complex interactions between disciplinary backgrounds and technological
readiness, demonstrating that Big Data Analytics (BDA) is crucial for educational leaders to
improve educational quality (Datnow and Park, 2014).

6. Limitation and Future Research

While acknowledging limitations of geographical and institutional specificity, the research
challenges simplistic assumptions about technological capabilities by emphasizing a context-
sensitive, holistic approach to technological development (Bhutoria, 2022). Recognizing the
multifaceted nature of technological preparedness, future research should explore cross-
institutional comparisons, longitudinal technological adaptation patterns, and deeper
analyses of organizational factors influencing BDA readiness. Policymakers are urged to
develop targeted funding mechanisms, establish clear technological standards, create
incentive structures, and address critical data security and ethical concerns, thereby moving
beyond demographic categorizations to foster a more nuanced understanding of
technological competence in higher education (Selwyn, 2015).

Future research could significantly advance the understanding of BDA readiness by
developing more comprehensive, culturally responsive methodological approaches.
Researchers are encouraged to transcend traditional sampling strategies, recruiting diverse
participants across multiple educational contexts, disciplinary domains, and cultural
configurations. By adopting mixed-methods designs that integrate quantitative rigor with
qualitative depth, future studies could explore the complex cognitive, motivational, and
institutional factors mediating technological competence, thereby enhancing the
generalizability of findings and unveiling nuanced technological engagement patterns.

Subsequent investigations might productively employ critical, intersectional perspectives
to examine technological readiness. Scholars are recommended to interrogate the complex
interactions between individual agency and institutional structures, accounting for power
dynamics, social constructions, and systemic inequities. Future research could benefit from
implementing longitudinal research designs, advanced mixed-methods approaches, and
sophisticated analytical frameworks that move beyond linear, deterministic models. By
developing context-sensitive, equity-focused research strategies, subsequent studies could
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generate transformative insights into the dynamic, socially embedded nature of technological
preparedness across diverse academic landscapes.
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