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Abstract 
 

Amid the growing imperative for digital transformation in higher education, the readiness of academic faculty to 
adopt data analytics tools remains underexplored, particularly in the Chinese context. This study investigates the 
influence of demographic and professional characteristics on faculty readiness for big data analytics (BDA) 
across International Scholarly Exchange Curriculum (ISEC) and non-ISEC institutions. The primary objective is 
to examine differences in BDA readiness across variables such as ISEC affiliation, gender, professional rank, and 
educational background. Using a non-experimental causal-comparative design, data were collected from 154 
full-time faculty members across 10 Chinese universities. A modified DELTA+ model served as the assessment 
framework, covering six key dimensions of analytics readiness: data, enterprise, leadership, targets, technology, 
and analysts. Statistical analysis using t-tests and two-way ANOVA revealed that while most readiness dimensions 
did not significantly differ, technology readiness was significantly higher among non-ISEC faculty. Gender, rank, 
and education showed no main effects, though a significant interaction between ISEC status and education was 
observed. These findings underscore the complexity of technological readiness and suggest that institutional 
affiliation and educational background interact in shaping analytics capabilities. The study calls for targeted 
institutional policies and further research to refine professional development strategies in higher education. 
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1. Introduction 
 
In the contemporary landscape of higher education, digital transformation has emerged as a 
critical catalyst for institutional evolution and pedagogical innovation (Daniel, 2017). The 
COVID-19 pandemic precipitated an unprecedented technological acceleration, compelling 
educational institutions to rapidly recalibrate their technological infrastructures and 
pedagogical methodologies (Daniel, 2020; Bao, 2020). 

The International Scholarly Exchange Curriculum (ISEC), strategically positioned within 
China's educational modernization framework, represents a sophisticated institutional 
transformation model. Affiliated with the China Scholarship Council (CSC) and embedded in 
the "Education Modernization 2035 Plan," ISEC strategically targets local and provincial 
higher education institutions. Unlike traditional educational approaches, ISEC adopts a 
comprehensive internationalization strategy that emphasizes systematic professional 
development through structured training and rigorous assessment protocols. 

Theoretical perspectives on technological adoption provide essential conceptual 
foundations for understanding this transformative process. The Unified Theory of Acceptance 
and Use of Technology (UTAUT) framework elucidates the complex psychological 
mechanisms underlying technological integration (Venkatesh et al., 2012). Empirical research 
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consistently demonstrates that individual differences—particularly age, gender, and 
professional rank—significantly moderate technology acceptance rates (Compeau and 
Higgins, 1995; Gibson, 2017). 

Building upon Gibson's (2017) insights into technological competence, this study 
cautiously explores the potential variations in faculty readiness for data analytics tools. 
Through a non-experimental causal-comparative design involving 154 faculty members 
across 10 Chinese universities, this study aims to tentatively investigate the interactions 
between demographic factors and technological preparedness. This research seeks to develop 
preliminary insights into the mechanisms of technological adoption, faculty development 
strategies, and the complex relationships between individual characteristics and technological 
readiness. 

Methodologically, a modified DELTA+ assessment instrument was leveraged, 
characterized by enhanced validity and reliability, to capture the multidimensional nature of 
technological readiness. Our mixed-methods approach integrates quantitative analysis with 
contextual qualitative insights, providing a comprehensive understanding of technological 
adoption dynamics. 

The study's contributions tentatively extend beyond traditional academic discourse, 
offering preliminary attempt into potential interventions across multiple domains. By 
carefully examining faculty training strategies, cross-cultural learning environment design, 
and potential pathways for digital transformation in higher education, our research modestly 
bridges theoretical frameworks with empirical evidence. While acknowledging the inherent 
limitations of our study, we aim to contribute to the emerging scholarship on technological 
integration in global higher education, with a focused exploration of the complex Chinese 
educational context. Our findings suggest potential mechanisms for understanding 
technological adoption, recognizing the need for further research to validate and expand these 
initial observations. 
 
 
2. Digital Transformation in Higher Education and the Theoretical Synthesis 
Framework 
 
The landscape of digital transformation in higher education represents a complex, 
multifaceted phenomenon that transcends simplistic technological implementation. 
Arviansyah et al. (2024) critically illuminates this transformation as a profound 
reconfiguration of institutional logics and practice paradigms, challenging traditional 
conceptualizations of technological innovation. The Technology-Organization-Environment 
(TOE) framework emerges as a pivotal theoretical lens, with Baker (2011) systematically 
articulating its foundations and Hiran and Henten (2020) empirically demonstrating the 
contextual complexity of technological integration in educational settings. 

Theoretical perspectives from innovation diffusion and critical technology studies provide 
nuanced insights into this transformative process. Rogers' (1962) seminal work on innovation 
diffusion reveals the complex mechanisms of technological propagation. Simultaneously, 
Bijker (1997) and Feenberg (2012) challenge technological determinism, conceptualizing 
technological artifacts as socially constructed entities embedded with power relations and 
cultural meanings. Çelik (2024) synthesizes these perspectives, demonstrating how 
technological innovation simultaneously shapes and is shaped by organizational practices, 
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with Markus (2004) and Orlikowski (2000) particularly emphasizing the dialectical 
relationship between technological systems and human agency. 

The critical examination of digital transformation extends beyond mere technological 
implementation, revealing a complex interplay of social, organizational, and technological 
dynamics. Noble's (2017) historical sociological analysis and Selwyn's (2019) critical 
investigation of artificial intelligence in education underscore the profound institutional 
implications of technological innovation. Greenhalgh et al. (2004) provide a systematic review 
of innovation diffusion, while Chatterjee et al. (2024) offer a sophisticated framework 
exploring the intricate relationships between technological capabilities, organizational 
turbulence, and management support. 

Ultimately, digital transformation in higher education emerges as a continuous process of 
institutional reimagination. It demands a sophisticated theoretical approach that transcends 
technological instrumentalism, focusing instead on the complex interplay between 
technological artifacts, organizational practices, and human agency. The theoretical synthesis 
reveals this transformation not as a predetermined trajectory, but as a dynamic, contextually 
embedded process of institutional reconfiguration that requires continuous critical reflection 
and adaptive theoretical frameworks. This comprehensive analysis illuminates digital 
transformation as a multidimensional phenomenon that fundamentally challenges existing 
institutional logics. It represents a critical juncture where technological potential, institutional 
constraints, and social dynamics converge, requiring researchers and institutional leaders to 
develop nuanced, flexible theoretical frameworks for understanding technological change in 
higher education. 

Recognizing the complexity of digital transformation in higher education, five theoretical 
frameworks for digital transformation were analyzed: DAVCM, DACM, DAMM, DALM, and 
DELTA Model. Each model reveals distinct limitations: DAVCM oversimplifies complexity, 
DACM lacks empirical support, DAMM neglects technological dynamics, and DALM remains 
overly abstract (Curry, 2016; Király and Zdonek, 2020). Adopting Davenport et al.'s (2010) 
DELTA model, this study leverages a comprehensive framework integrating data, enterprise, 
leadership, technology, targets, and analysts to ensure strategic alignment with institutional 
transformation goals. 
 
Table 1: Comparative analysis of data analysis models 

Model  Description  Strengths  Weaknesses 
Data Analysis Value 
Chain Model 
(DAVCM) 

Describes the full lifecycle 
process of data analysis 

Helps understand the 
purpose, scope, methods of 
data analysis 

Over-simplifies, ignore 
environmental influences 

Data Analysis 
Capability Model 
(DACM) 

Assesses data analysis 
capabilities and 
prerequisites 

Provides a comprehensive 
capability framework and 
assessment tools 

Lacks empirical support, 
ignores different stages 

Data Analysis Maturity 
Model (DAMM) 

Describes maturity stages 
of data analysis 

Provides a clear 
development path 

Overly idealized, ignores 
dynamism 

Data Analysis Lifecycle 
Model (DALM) 

Provides concepts, 
principles, methods, and 
tools for data analysis 

Helps design and execute 
data analysis projects 

Overly complex and 
abstract, with low 
feasibility 

DELTA Model Evaluates data, 
enterprise, leadership, 
targets, analysts 

Comprehensive, practical, 
adaptive, suitable for higher 
education 

May overlook some 
analytical details 

Note: The table presented above has been compiled by the author based on a synthesis of relevant literature and data. 
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3. Methodology 
 
Employing a causal-comparative research design recommended by Campbell and Stanley 
(1963), this study systematically explored differences in Big Data Analytics (BDA) readiness 
between ISEC and non-ISEC faculty without direct variable manipulation, enabling precise 
identification of significant group variations (Proudfoot et al., 2018). The research was 
theoretically grounded in the DELTA+ model (Davenport et al., 2010), which assesses BDA 
readiness across six critical dimensions: data, enterprise, leadership, targets, technology, and 
analysts. These dimensions provide a nuanced framework for understanding technological 
readiness in educational contexts.  
 
Table 2: The six elements of the big data readiness assessment survey 

Element  Element Description   Sample Question 
Data Data is the most fundamental component of  

a big-data setup and is a vital determinant of  
the success of a big-data initiative. Data can  
be obtained from external or internal sources  
and can be structured or unstructured. 

We have access to very large,  
unstructured, or fast-moving data 
for analysis.  

Enterprise An enterprise approach to big data is crucial  
to achieving big data readiness and maturity.  
It entails unifying a big-data initiative across  
the entire organization. 

We employ a combination of big data 
and traditional analytics approaches 
to achieve our organization's goals.  

Leadership Leaders in big-data-ready institutions should  
be passionate and committed to adopting and  
implementing the technologies. In addition,  
they must have a disruptive mindset, meaning that they are 
ready to disrupt the status quo and try new, risky approaches 
and are also willing to experiment with data on a large scale. 

Our senior executives regularly  
consider the opportunities that big  
data and analytics might bring to 
our business. 

Targets Targets imply that an institution must  
identify where big-data analytics will be  
applied within the institution 

We prioritize our big data efforts to  
high-value opportunities to  
differentiate us from our 
competitors. 

Technology Technology aids in the management and  
analysis of data. Big data entails large  
volumes of structured and unstructured data  
and the relevant technologies that enable  
data processing and analysis. 

We have explored or adopted parallel  
computing approaches (e.g., 
Hadoop)  
to big data processing. 

Analysts Analysts represent the human side of big  
data and are crucial to the initiative's success. Adopting and 
deriving meaningful information from big data requires a 
literate workforce and data scientists focusing specifically on 
data operations. 

We have a sufficient number of  
capable data scientists and analytics  
professionals to achieve our  
analytical objectives 

Note: Reprinted from Big data at work: Dispelling the myths, uncovering the opportunities, by Thomas Davenport. Copyright 2014 by 
Harvard Business Review Press. 

 
Four research questions guided the investigation: 
- RQ1: Are there significant differences in BDA readiness elements between ISEC and non-
ISEC faculty? 
- RQ2: Are there significant differences in BDA readiness based on gender? 
- RQ3: Are there significant differences in BDA readiness based on professional rank? 
- RQ4: Are there significant differences in BDA readiness based on educational background? 
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Sample size determination utilized G*Power 3.1.9.7, establishing parameters of a medium 
effect size (0.5), significance level of 0.05, and statistical power of 0.80. This approach yielded 
a minimum requirement of 64 participants per group, with the study ultimately recruiting 160 
participants to ensure robust analytical depth. The sampling strategy employed stratified 
random sampling, targeting full-time faculty members across multiple Chinese universities. 
Careful selection criteria ensured representation from ISEC and non-ISEC programs, 
maintaining methodological integrity. 

The measurement instrument—a modified DELTA+ BDA Readiness Assessment—utilized 
a 5-point Likert scale. Rigorous validation processes, including expert panel review, yielded 
a Cronbach's α of 0.87, demonstrating strong instrument reliability. Statistical analyses 
integrated descriptive and inferential techniques, including independent samples t-tests and 
one-way ANOVA. These methods enabled systematic examination of potential differences in 
BDA readiness across demographic and professional characteristic: 
 
 
4. Data Analysis 
 
Participants’ Demographic Profiles  
This section demonstrates participant demographic profiles based on the survey responses 
from 154 faculty at 10 ISEC member universities in China. Participants voluntarily provided 
information on name, gender, age, institution, teaching experience, rank, education, 
discipline, ISEC participation, and faculty type. Most participants were from Inner Mongolia 
(n = 59, 38.3%), followed by Hebei Province (n = 21, 13.6%), Jiangxi Province (n = 18, 11.7%), 
Guizhou Province (n = 15, 9.7%), Fujian Province (n = 14, 9.1%), Liaoning Province (n = 14, 
9.1%) and Guangdong Province (n = 13, 8.4%). In terms of gender, there were more males (n 
= 81, 52.6%) than females (n = 73, 47.7%). For professional ranks, most were lecturers (n=83, 
53.9%), followed by associate professors (n = 51, 33.1%), professors (n = 14, 9.1%), and teaching 
assistants (n = 6, 3.9%). Regarding education background, most held master's degrees (n = 114, 
74%), followed by doctoral degrees (n = 33, 21.4%), and bachelor's degrees (n = 7, 4.5%).  
 
Descriptive Statistics of Variables  
Descriptive statistics were calculated for the DELTTA readiness scores (see Table 7). The 
composite score combining all DELTTA subscales was lower for ISEC (M = 3.52, SD = .83) 
versus non-ISEC faculty (M = 3.71, SD = .83). The minimum score was 1 for ISEC and 1.73 for 
non-ISEC faculty. Median scores were 3.67 and 3.73 for ISEC and non-ISEC groups 
respectively. The individual subscales of the BDA adoption readiness mean scores are 
displayed in Table 8. The mean scores for each of the elements for the ISEC and non-ISEC 
faculty helped to address RQ2. 
 
Table 3: Overall BDA readiness scores of ISEC and non-ISEC faculty 

Overall BDA n Range Minimum Maximum Mean SD 
ISEC 77 4 1 5 3.52 .83 
Non-ISEC 77 3.27 1.73 5 3.71 .83 

 
 
 
Table 4: Individual BDA readiness score of ISEC and non-ISEC faculty 
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Elements Group N Range Min Max Mean SD 
Data ISEC 77 4 1 5 3.70 .11 
 non-ISEC 77 4 1 5 3.72 .13 
Enterprise ISEC 77 4 1 5 3.59 .10 
 non-ISEC 77 4 1 5 3.61 .13 
Leadership ISEC 77 4 1 5 3.42 .12 
 non-ISEC 77 4 1 5 3.74 .12 
Target ISEC 77 4 1 5 3.59 .11 
 non-ISEC 77 4 1.6 5 3.71 .12 
Technology ISEC 77 4 1 5 3.40 .11 
 non-ISEC 77 4 1.6 5 3.72 .11 
Analysts ISEC 77 4 1 5 3.45 .12 
 non-ISEC 77 4 1 5 3.76 .12 

Note: The Likert scale from the DELTTA survey corresponds to 1 = Analytically Impaired, 2 = Localized Analytics, 3 = Analytical 
Aspirations, 4 = Analytical Companies, and 5 = Analytical Competitors (Davenport, 2014; Davenport et al., 2010) 
 
The Likert scale from the DELTTA survey reflects the stages of analytics maturity and 
competitiveness of different enterprises. For a detailed explanation, please refer to the 
DELTTA Plus Model & Five Stages of Analytics Maturity: A Primer (Davenport, 2014; 
Davenport et al., 2010), a research report by the International Institute for Analytics (IIA) 
that introduced the model and method for assessing and improving analytics maturity.  

The BDA readiness is delineated into six distinct elements in Table 4, showing the 
range, minimum, maximum, mean, and standard deviations of the ISEC and non-ISEC 
groups. For each element of data, enterprise, leadership, target, technology, and analysts, 
the non-ISEC faculty group had marginally higher scores than the ISEC group. The 
smallest difference was in the data element, with ISEC (M = 3.7, SD = .11) and non-ISEC 
(M = 3.72, SD = .13) demonstrating similar readiness. The largest gap was in the leadership 
element, where non-ISEC faculty (M = 3.74, SD = .12) scored considerably higher than ISEC 
faculty (M = 3.42, SD = .12).  

Overall, Tables 3 and 4 reveal slightly higher levels of big data analytics readiness 
among non-ISEC faculty compared to the ISEC faculty across both the composite and 
individual element scores. The descriptive statistics highlight the readiness areas with 
room for improvement in the ISEC faculty to match or exceed their non-ISEC peers. 
 
Independent t-Test Results of RQ1 
Research Question 1 (RQ1) was aimed to examine if a statistically significant difference 
exists in the readiness levels for BDA across specific elements - data, enterprise, 
leadership, targets, technology, and analysts - between the ISEC and the non-ISEC faculty. 
Identifying these differences is crucial for understanding how ISEC affiliation might 
influence an educator's proficiency in various BDA components, informing targeted 
enhancement of BDA capabilities. 

RQ1: Is there a statistically significant difference between the ISEC and non-ISEC 
faculty, and BDA readiness elements individually (data, enterprise, leadership, targets, 
technology, and analysts)? 

 
 
 
 

 
Table 5: Independent samples t-test of BDA scores for the ISEC and non-ISEC faculty 
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 Group Mean SD Mean 
difference 

t Sig. Cohen d 95% 
Lower 

CI 
Upper 

Overall ISEC 3.52 .83 -.19 -1.39 .17 .23 -.45 .08 
 non-ISEC 3.71 .83 
Data ISEC 3.70 .97 -.03 -.15 .88 .02 -.36 -.31 
 non-ISEC 3.73 1.12 
Enterprise* ISEC 3.60 .92 -.02 -.11 .91 .02 -.35 .31 
 non-ISEC 3.62 1.13 
Leadership ISEC 3.42 1.03 -.32 -1.93 .06 .31 -.65 .01 
 non-ISEC 3.74 1.02 
Target ISEC 3.60 1.01 -.12 -.76 .45 .12 -.45 .2 
 non-ISEC 3.72 1.03 
Technology ISEC 3.40 1 -.32 -2.04 .04 .32 -.64 -.01 
 non-ISEC 3.72 .97 
Analysts ISEC 3.45 1.05 -.31 -1.79 .08 .29 -.65 .03 
 non-ISEC 3.76 1.1 
Notes: N=154 (77 for each ISEC and non-ISEC group. * Values for data subscale are from Welch t-test (equal variances not assumed) for t-test 
for equality of means.  

 
Research Question 1 examined whether there were statistically significant differences in big 
data analytics (BDA) readiness between the ISEC and non-ISEC faculty across six individual 
elements: data (ISEC: M = 3.70, SD = 0.97; non-ISEC: M = 3.73, SD = 1.12), enterprise (ISEC: M 
= 3.60, SD = 0.92; non-ISEC: M = 3.62, SD = 1.13), leadership (ISEC: M = 3.42, SD = 1.03; non-
ISEC: M = 3.74, SD = 1.02), targets (ISEC: M = 3.60, SD = 1.01; non-ISEC: M = 3.72, SD = 1.03), 
technology (ISEC: M = 3.40, SD = 1.00; non-ISEC: M = 3.72, SD = 0.97), and analysts (ISEC: M = 
3.45, SD = 1.05; non-ISEC: M = 3.76, SD = 1.10). Independent samples t-tests were conducted 
to test sets of directional hypotheses. 

The t-test results indicated no significant differences between the ISEC and non-ISEC 
faculty for data readiness, enterprise readiness, targets readiness, or analysts readiness, with 
all p values > .05. However, there was a significant difference for technology readiness, t (152) 
= -2.04, p = .04, with non-ISEC faculty scoring higher than the ISEC faculty. The mean 
differences ranged from -0.03 (data) to -0.32 (leadership), with corresponding small to 
medium Cohen's d effect sizes from 0.02 to 0.32. The 95% confidence intervals for the non-
significant readiness elements all overlapped zero, further indicating a lack of significant 
differences. For technology readiness, the predominantly negative 95% CI suggests the 
direction of the significant difference favoring non-ISEC faculty. 
 
Two-way ANOVA Analysis Results of RQ2 
RQ2: Is there a statistically significant difference in BDA Readiness between ISEC 
 faculty and non-ISEC faculty based on gender? 

 
Table 6: Descriptive statistics of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on 
gender 

Group Gender Mean Std. Deviation N 
ISEC  

 

Male 3.49 0.80 37 
Female 3.56 0.87 40 
Total 3.53 0.83 77 

Non-ISEC Male 3.84 0.79 44 
Female 3.54 0.88 33 
Total 3.71 0.84 77 

Total Male 3.68 0.81 81 
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Female 3.55 0.87 73 
Total 3.62 0.84 154 

 
Table 7: Two-way ANOVA of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on 
gender 

Source F Sig. Partial Eta Squared 
ISEC Non-ISEC 1.517 0.22 0.01 
Gender 0.723 0.396 0.005 
ISEC Non-ISEC*Gender 1.95 0.165 0.013 

*Indicates interaction effect 

 
Research Question 2 (RQ2) examined whether there was a statistically significant difference 
in overall big data analytics BDA readiness between ISEC and non-ISEC faculty based on 
gender. A two-way ANOVA was conducted with two between-subjects factors - ISEC status 
(ISEC vs non-ISEC) and gender (male vs female).  

The descriptive statistics showed that male faculty in the non-ISEC group had the highest 
overall BDA readiness score (M = 3.84, SD = 0.79, n = 44), while male faculty in the ISEC group 
had the lowest score (M = 3.49, SD = 0.80, n = 37).  

Levene's test verified the assumption of homogeneity of variances was met, F (3, 150) = 
0.095, p = .963. The two-way ANOVA results indicated no significant main effect for ISEC 
status, F (1, 150) = 1.517, p = .22, partial η2 = .010, or for gender, F (1, 150) = 0.723, p = .396, 
partial η2 = .005. The interaction effect between ISEC status and gender was also not 
significant, F (1, 150) = 1.95, p = .165, partial η2 = .013. 

In summary, the findings for RQ3 failed to reject the null hypothesis as there were no 
significant differences in overall BDA readiness between ISEC and non-ISEC faculty when 
accounting for gender. This signifies that gender may not be a powerful factor influencing 
BDA readiness levels in this sample. Further research with larger sample sizes may be 
warranted to fully examine potential interaction effects. 
 
Two-way ANOVA Analysis Results of RQ3 
RQ3: Is there a statistically significant difference in BDA Readiness between the ISEC and non-
ISEC faculty based on professional rank? 

 
Table 8: Descriptive statistics of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on 
professional rank 

Groups Prank Mean Std. Deviation N 
ISEC TA 3.27  0.28  2  
 Lecturer 3.44  0.83  37  
 Associate Prof 3.67  0.95  28  
 Prof 3.52  0.56  10  
 Total 3.53  0.83  77  
Non-ISEC TA 3.47  0.87  4  
 Lecturer 3.83  0.79  46  
 Associate Prof 3.52  0.95  23  
 Prof 3.75  0.65  4  
 Total 3.71  0.84  77  
Total TA 3.40  0.69  6  
 Lecturer 3.66  0.82  83  
 Associate Prof 3.60  0.95  51  
 Prof 3.59  0.57  14  
 Total 3.62  0.84  154  
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Table 9: Two-way ANOVA of overall DELTTA BDA scores for ISEC and non-ISEC faculty Based on 
professional rank 

Source F Sig. Partial Eta Squared 
ISEC Non-ISEC .517 .473 .004 
Professional Rank 1.183 .908 .004 
ISEC Non-ISEC*ProfRank 1.081 .359 .022 

*Indicates interaction effect 

 

 
 

Figure 1: Profile plot based on professional rank 
 
Research Question 3 examined whether there were significant differences in big data analytics 
(BDA) readiness between ISEC and non-ISEC faculty based on professional rank (teaching 
assistant, lecturer, associate professor, professor). A two-way ANOVA was conducted with 
two between-subjects factors - ISEC status and professional rank.  

The descriptive statistics showed that mean BDA readiness scores were relatively similar 
across professional ranks, ranging from 3.40 (teaching assistants) to 3.59 (professors) in the 
total sample. Amongst ISEC faculty, associate professors had the highest readiness (M = 3.67, 
SD = .95, n = 28), while teaching assistants had the lowest (M = 3.27, SD = .28, n = 2). For non-
ISEC faculty, lecturers showed the highest readiness (M = 3.83, SD = .79, n = 4), and teaching 
assistants had the lowest scores (M = 3.47, SD = .87, n = 4). 

Levene’s test verified that the assumption of homogeneity of variances was met, F (7, 146) 
= 1.067, p = .388. The two-way ANOVA revealed no significant main effect for ISEC status, F 
(1, 146) = 0.517, p = .473, partial η2 = .004, indicating no significant difference in overall BDA 
readiness between ISEC (M = 3.53, SD = 0.83) and non-ISEC (M = 3.71, SD = 0.83) faculty. There 
was also no significant main effect for professional rank, F (3, 146) = 0.183, p = .908, partial η2 
= .004, suggesting no significant differences in BDA readiness across the ranks. Furthermore, 
the interaction between ISEC status and professional rank was non-significant, F (3, 146) = 
1.081, p = .359, partial η2 = .022, signifying that the effect of ISEC status did not differ across 
ranks. 

Since the ANOVA results were not significant, that is, the p-values of the main effects or 
interaction effects were all greater than the significance level (usually 0.05), there was no need 
to conduct a post hoc test, because the purpose of these comparisons was to find out which 
groups had significant differences, and the ANOVA had already shown that there were no 
significant differences. Performing post hoc multiple comparisons might increase the risk of 
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Type I error, which is rejecting the null hypothesis erroneously, thinking that there were 
differences.  

The profile plot (Figure 1) also displayed no significant interaction effect between ISEC 
status and professional rank. The plot showed relatively parallel lines for ISEC and non-ISEC 
faculty groups across the ranks of teaching assistant, lecturer, associate professor, and 
professor. The lack of crossover interaction effects further supports the non-significant 
difference in BDA readiness between ISEC and non-ISEC across professional ranks. 

The results for RQ3 failed to reject the null hypothesis, as the two-way ANOVA found no 
statistically significant differences in overall BDA readiness between ISEC and non-ISEC 
faculty based on professional rank. These findings indicate professional rank may not be a 
powerful variable influencing BDA readiness among this particular faculty sample.  In 
addition, further examination using Cohen’s d effect sizes revealed no potential practical 
differences between some ranks. In summary, the non-significant statistical findings should 
be interpreted cautiously, as the small and imbalanced rank group sizes likely limited 
statistical power.  
 
Two-way ANOVA Analysis Results of RQ4 
RQ4: Is there a statistically significant difference in BDA Readiness between the ISEC and non-
ISEC faculty based on their educational background? 
 
Table 10: Descriptive statistics of overall DELTTA BDA scores for ISEC and non-ISEC faculty based on 
educational background 

Group Edu background Mean Std. Deviation N 
ISEC BA 3.32 1.70 3 

Master 3.79 0.60 48 
Ph.D. 3.08 0.93 26 
Total 3.53 0.83 77 

Non-ISEC BA 3.43 - 1 
Master 3.66 0.84 54 
Ph.D. 3.87 0.83 22 
Total 3.71 0.84 77 

Total BA 3.35 1.39 4 
Master 3.72 0.74 102 
Ph.D. 3.44 0.96 48 
Total 3.62 0.84 154 

Note: Categories with one sample do not have a standard deviation. 

 
Table 11: Two-way ANOVA of overall DELTTA BDA scores for ISEC and non-ISEC faculty Based on 
educational background 

Source F Sig. Partial Eta Squared 
ISEC Non-ISEC .624 .431 .004 
Edu Background 1.695 .187 .022 
ISEC Non-ISEC*EduBack 5.261 .006 .066 

*Indicates interaction effect 

 
 
 
 
Table 12: Levene's test of equality of error variances for BDA readiness by ISEC groups and educational 
background 
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Levene's Test of Equality of Error Variancesa,b 
  Levene Statistic df1 df2 Sig. 
TotalDeltta Based on Mean 2.969 4 148 .021 

Based on Median 1.923 4 148 .110 
Based on Median and with 
adjusted df 

1.923 4 83.521 .114 

Based on trimmed mean 2.876 4 148 .025 
Tests the null hypothesis that the error variance of the dependent variable is equal across groups. 
a. Dependent variable: TotalDeltta 
b. Design: Intercept + ISECID + eduback + ISECID * eduback 

 
Research Question 4 examined whether there were significant differences in big data analytics 
(BDA) readiness between ISEC and non-ISEC faculty based on educational background (BA, 
Master’s, Ph.D.). A two-way ANOVA was conducted with two between-subjects factors – 
ISEC status and education level. 

The descriptive statistics showed educational background had varying effects on mean 
BDA readiness scores for ISEC versus non-ISEC groups. Amongst ISEC faculty, those with a 
Master’s degree had the highest readiness (M = 3.79, SD = .60, n = 48), while Ph.D. holders had 
the lowest (M = 3.08, SD = .93, n = 26). For non-ISEC faculty, Ph.D. holders displayed the 
highest readiness (M = 3.87, SD = .83, n = 22), compared to Master’s (M = 3.66, SD = .84, n = 54) 
and BA (M = 3.43, n = 1).  

Levene’s test showed the assumption of homogeneity of variances was violated, F (4, 148) 
= 2.969, p = .021. The two-way ANOVA revealed no significant main effect for ISEC status, F 
(1, 148) = 0.624, p = .431, partial η2 = .004. There was also no significant main effect for 
education level, F (2, 148) = 1.695, p = .187, partial η2 = .022. However, a significant interaction 
effect was found between ISEC status and education level, F (2, 148) = 5.261, p = .006, partial 
η2 = .066. Since Levene's test showed that the assumption of homogeneity of variance was 
violated, a more stringent significance level (.01) was adopted to evaluate the ANOVA results, 
to reduce the risk of type I error, the p-value was still = .021. Therefore, the two-way ANOVA 
on research question 5 was discontinued. 
 
 
5. Discussion and Conclusions 
 
The investigation of Big Data Analytics (BDA) readiness among ISEC and non-ISEC faculty 
reveals nuanced insights into technological preparedness across multiple dimensions. While 
most BDA readiness elements showed no statistically significant differences, technology 
readiness emerged as a critical differentiating factor between ISEC and non-ISEC faculty. 
Non-ISEC faculty demonstrated significantly higher technology readiness (t(152) = -2.04, p = 
0.04), challenging conventional assumptions about technological capabilities across academic 
disciplines. This finding aligns with Tasmin and Huey's (2020) research, which emphasizes 
that BDA readiness is not merely about technological infrastructure but involves complex 
factors such as relative advantage, compatibility, and organizational support. The finding 
suggests that technological competence in the digital era transcends generational boundaries, 
indicating a more nuanced relationship between professional experience and technological 
adaptability. 

Gender analysis revealed no significant differences in BDA readiness, highlighting the 
importance of moving beyond simplistic demographic categorizations. While Al-Rahmi et al. 
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(2019) found gender to be a significant moderator in technology acceptance in a Saudi Arabian 
context, this study's results diverge. As Connell (2013) argues, gender is a complex social 
structure formed within specific cultural contexts and should not be viewed as a singular, 
static attribute. The findings underscore the need for intersectional approaches that consider 
gender's interaction with other social factors like education, work experience, and self-
efficacy. 

Professional rank did not significantly impact BDA readiness, suggesting that 
technological competence is more closely linked to individual motivation, institutional 
culture, and continuous learning opportunities. Adrian et al. (2017) had hypothesized that 
higher-ranked faculty might be more likely to adopt BDA due to greater knowledge and 
resources. However, this study's results caution against such linear assumptions. As Morley 
et al. (2020) suggest, research should adopt inclusive perspectives that value diverse expertise 
across academic hierarchies and career stages. This study extends the DELTA+ model by 
revealing the complex interactions between disciplinary backgrounds and technological 
readiness, demonstrating that Big Data Analytics (BDA) is crucial for educational leaders to 
improve educational quality (Datnow and Park, 2014). 
 
 
6. Limitation and Future Research 
 
While acknowledging limitations of geographical and institutional specificity, the research 
challenges simplistic assumptions about technological capabilities by emphasizing a context-
sensitive, holistic approach to technological development (Bhutoria, 2022). Recognizing the 
multifaceted nature of technological preparedness, future research should explore cross-
institutional comparisons, longitudinal technological adaptation patterns, and deeper 
analyses of organizational factors influencing BDA readiness. Policymakers are urged to 
develop targeted funding mechanisms, establish clear technological standards, create 
incentive structures, and address critical data security and ethical concerns, thereby moving 
beyond demographic categorizations to foster a more nuanced understanding of 
technological competence in higher education (Selwyn, 2015). 

Future research could significantly advance the understanding of BDA readiness by 
developing more comprehensive, culturally responsive methodological approaches. 
Researchers are encouraged to transcend traditional sampling strategies, recruiting diverse 
participants across multiple educational contexts, disciplinary domains, and cultural 
configurations. By adopting mixed-methods designs that integrate quantitative rigor with 
qualitative depth, future studies could explore the complex cognitive, motivational, and 
institutional factors mediating technological competence, thereby enhancing the 
generalizability of findings and unveiling nuanced technological engagement patterns. 

Subsequent investigations might productively employ critical, intersectional perspectives 
to examine technological readiness. Scholars are recommended to interrogate the complex 
interactions between individual agency and institutional structures, accounting for power 
dynamics, social constructions, and systemic inequities. Future research could benefit from 
implementing longitudinal research designs, advanced mixed-methods approaches, and 
sophisticated analytical frameworks that move beyond linear, deterministic models. By 
developing context-sensitive, equity-focused research strategies, subsequent studies could 
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generate transformative insights into the dynamic, socially embedded nature of technological 
preparedness across diverse academic landscapes. 
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