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Abstract  

Multi-Depot VRP (MDVRP) is a metaheuristic approach with concurrent vehicle rendezvous across 

various depots within a demanded regulation, where the task assignment would eventually end up at the 

same initial depot. A review of the relief commodities distribution patterns among flood-prone areas in 

the underlying layouts of Sarawak residential areas has been conducted in retrospect and in light of 
common real-world routing problems.  The purpose of this research is to demonstrate the benefits of 

multi-path route selection in task distribution to cater to simultaneous demands for adhering to strict 

constraint settings, including load dispatch dynamism and deployed vehicle quantities. Shortest path 

algorithms are improvised as an alternative to select the most optimum traveled routes during relief 

commodity distribution. This is done by determining critical allocation nodes, where solution steps are 

optimized using a genetic algorithm with predefined parameters.  The experimental output displays the 

strong correlation between the number of prioritized customers and assigned depots to optimize the route 

complexity and natural affluence on generated final solution cost.  The approach is seen as viable for 

further addressing problem-specific instances in vehicle routing problems such as adjusting parameter 

settings to generate rapid solution steps, including pathfinding shortest coverage distance and sorting out 

trade-offs between space covered and the time limitations of task distribution efforts. 
 

Keywords: vehicle routing problem, MDVRP, genetic computation, optimization, routing complexity. 

 
 

 

INTRODUCTION 

In disaster preparation and response, logistics scheduling is a key element. Therefore, constant 

monitoring of the surrounding environment, rehearsal of actions to be undertaken under a certain 

circumstance, and the level of danger directly affect the logistics to be provided.  Currently, there are no 

credible techniques to devise optimal strategies to distribute emergency resources in a way that is both 

efficient and effective in responding to disasters under minimized effort, and an urgent need to develop 

a model that would enhance decision-making on the critical variables for successful disaster response.  

Sarawak is a region with population demography encompassing annual heavy precipitation during 

monsoon seasons, particularly interlinked with coastal underlying areas that are dense with civilization 

activities.  Due to the variance in development progress among urban and rural areas, there had been 

difficulties in addressing the traversal network interjecting the priority areas with considerable population 

density for disaster relief routing scheduling.  The current solution strategy of manual dissemination for 
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relief distribution conducted by local authorities is seen only beneficial for instances before a disaster 

occurs, where the efficacy becomes ambiguous with the unpredictable type of eminent natural disaster.  

The decision-making aspects for planning stages of impending catastrophes could be improved with an 

automated solution strategy for determining the logic and credibility of distribution variables, among 

these include important areas that need to be covered during relief deployment, total permissible routing 

distance, the quantity of participating vehicles for smooth distribution, demand levels according to 

priority superiority, and the number of maximum allowed resource allocation.  The formulation of a 

better-synergized scheduling system to resolve managerial instances for routing distribution during 

natural disaster situations such as flooding is seen as beneficial for long-term purposes, particularly in 

terms of advanced prediction and response towards any unforeseen circumstances. 

The Vehicle Routing Problem (VRP) and its various variants have been innovated as an alternative to 

resolve several issues impeding the efficacy of scheduling systems, particularly when working with 

specific restrictions such as time and resource limitations. The multi-depot vehicle routing problem 

(MDVRP), a variant of the basic VRP, supports the simultaneous execution of multiple vehicle 

distributions across all participating routes while simultaneously responding to planning constraints.  

Previous iterations of MDVRP on problem instances, such as disaster logistics incorporated communion 

across the participating vectors, however, this approach requires further iteration cluster segregation to 

improve the relevancy of interlinking participants mainly customers and their associated depots.  This 

research attempts to incorporate the familiarity of customer clusters with their neighboring nodes in terms 

of approximating the closest relative distance to improvise the estimation of the traveling distance 

between distribution depots with deployed vehicles to maximize cost optimality during a single 

deployment of relief distribution.  

 

PROBLEM STATEMENT 

No credible solution had been found to address the logistical aspects of scheduling relief commodities 

across multiple instances of demand priority. As an example, flood-prone demography is classified 

similarly to disaster logistics. During the preparation stage for natural disasters such as flooding woes in 

Sarawak, routing scenarios with niche features such as determining effective scheduling strategies have 

not been widely made available and practical. By establishing an effective disaster logistics routing 

system, preparedness and response levels could be improved in the event of floods. To formulate a better-

synergized scheduling strategy that can enhance the efficacy of existing distribution strategies for 

disaster-stricken areas such as flood mitigation, it is necessary to take into account scheduling variables 

for routing instances involving limitations such as cost allocation and permitted coverage areas. Further 

improvement of the welfare state of unexpected victims could be achieved by initiating an in-depth 

analysis on planning efficient routing schedules and priority distribution paths. The establishment and 

identification of appropriate solution strategies for improving the effectiveness of relief deployment are 

also problematic for scheduling systems such as relief distribution for flood preparedness. There is no 

widely used intelligent analytic system to resolve routing instances for disaster logistics such as flooding 

in Sarawak. The development and incorporation of a new relief strategy augmented with a computational 

intelligence application are essential for optimizing resource allocation and ensuring the quality of relief 

distribution cycles among those affected and their respective distribution centres.  

RELATED WORK 

The purpose of locating the shortest path possible to be traversed during a single distribution effort along 

a premeditated transportation network is made not only as a key determinant for enforcing rapid 

progression of successive commodity dispersal among the participating sectors but also improves the 

reliability of planning purposes in terms of approximating an optimal operating cost apart from ensuring 

maximized resource allotment.  Determining the most minimal coverage distance for certain round trips 

that still closely adhere to the scheduling system's trade-off between minimizing resources and 
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maximizing traveling had been the main objective for many variations of routing scheduling in 

corresponding research. The foundation for shortest path approximation within scheduling systems is to 

classify the possible best means to roam over multiple distribution points.  Routing the shortest distance 

in urban road freight transportation under horizontal collaboration was also performed via a combination 

of depot location and routing variables involving strategic, tactical, and operational decision-making as 

a two-echelon location routing problem ( Indriyono, 2021).  Another work to optimize multiple distances 

within a single traversal is done based on a two-stage optimization method for emergency supply 

allocation problems involving multi-supplier, multi-affected areas, multi-relief, and multi-vehicle using 

earthquake threats as sampling (Foead, Ghifari, Kusuma, Hanafiah, & Gunawan, 2021).  A solution 

method incorporating location-allocation issues was performed on several variables involving candidate 

hub locations, and customers, along with their clustering annotations using an endosymbiotic 

evolutionary algorithm (Rachmawati & Gustin, 2020).  Methods of consorting identification of shortest 

path approximation were also performed for an evaluation model based on emergency relief to simulate 

delivery routes, operating hours, and running distance for the relief operations in Aichi prefecture (Talan 

& Bamnote, 2015).  A combination of Dijkstra with the A* algorithm was improvised for a road network 

in city area traffic under time constraints based on bidirectional path searching (Wang et al., 2022).  A 

similar research scope combining the heuristics of both Dijkstra and A* algorithm was also implemented 

on regional scale maps in Indonesia for locating the shortest path (Foead et al., 2021).  

 

The incorporation of multi-depot instances on commodity distribution had been widely implemented in 

logistics scheduling, where feature implementations were amended to cater towards specific objectives 

in retrospect of scheduling constraints.  Metaheuristic optimization algorithms had also found their forte 

being improvised on planning and infrastructure inspection crews in concurrence with calamity aftermath 

respective with urban areas via the implementation of deterministic and probabilistic districting and 

routing problems (Lagaros & Karlaftis, 2011).  A multi-echelon MDVRP was devised for the post-

disaster phase that investigates the correlation between associating central warehouses, handling 

damaged goods, and scheduling supplies under resource limitations (Tavana et al, 2018).  Several multi-

level solution phases based on the evolutionary algorithm were also introduced to address the route 

complexity for multiple deployment instances. These include the disaster relief routing heuristics on 

location-allocation tasks for pre- and post-disaster mitigation efforts and sourcing of vehicles to strategic 

priority locations. A modeling scheme had also been devised for VRP instances consisting of arbitrary 

customer points and a stochastic deployment period that allows simultaneous item delivery among 

systemically varied customer locations in distinct locations (Lombard et al, 2018).  Along with the focus 

on commodity distribution under a limited time constraint, subsequent research had been conducted on 

emphasis for decision-making during preparedness and response stages for disaster relief efforts, as seen 

with the implementation of multi-echelon multi-depot VRP targeting to strategize location-allocation 

processes such as effective routing on rapid vehicle deployment for pre and post-disaster phases under a 

restricted resource scope.        

 

The following table highlights the traits of the aforementioned works, their limitations in resolving 

corresponding issues, and suggestions imposed on this research work on ways to alleviate them. 
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Table 1:  Summary of discussed relative research works and characteristics to be addressed 

in this feature research 
Feature Methodology Limitations Proposed Solution 

Shortest path traversal 

during a single 

distribution cycle 

Indriyono, 2021; 

Foead et al., 2021; 

Rachmawati et al., 

2020; Talan & 

Bamnote., 2015; 

Wang et al., 2022 

• Need feed data for a better 

representation of the distribution 

network 

• Classifying the relevant neighboring 

distribution nodes within their 

clusters is needed to improve 

performance credibility 

Perform better 

customer grouping 

within distribution 

clusters to enable 

better distribution 

patterns along the 

premeditated route 

Multi-depot dispatch 

with scheduling 

constraints 

Lagaros et al., 

2011; Tavana et 

al., 2018; 

Lombard et al., 

2018 

• Due to the nature of distinct 

scheduling constraints aftereffects of 

the trade-off between maximizing 

route coverage and encouraging cost 

optimality often result in unstable 

performance 

• Functional dependence on modeling 

constraints such as routing variables 

and scheduling flexibility 

Routing scheduling 

capability catering 

towards specific 

constraints to 

reduce the penalty 

on non-

accomplished task 

distribution efforts, 

particularly 

regarding the 

proficiency of 

distribution cycles 

 

 

 

RESEARCH FRAMEWORK 

 

The motivation for suggesting the applied modeling framework as shown in Figure 1 attempts to establish 

several critical issues endures by common MDVRP instances, mainly constituted by: (i) reducing the 

total possible deployment time, (ii) cutting back on total expedited cost, and (iii) optimizing deployment 

proficiency under the most achievable deployment distance.  

 

 
Figure 1: The framework for the implementation of the proposed amended GA using the 

multi-repository allocation on the flood relief routing scheme. 
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EXPERIMENTAL DEMOGRAPHY 

 

The following characteristics are executed in mind for planning a sector of analysis, representing the 

demographics prone to flooding in the region of Sarawak. 

 

i. Description of postal code geolocation: The purpose of assigning postal codes is to indicate the 

geographic location of a populated area. 

ii. Data collection: Analysis is performed on the availability of existing distribution centers or past 

operational rooms such as the school compound and town hall where better dissemination of 

relief efforts is conducted.   

iii. The distance among traveled nodes:  Vehicle deployments operate asynchronously upon single 

deployment where it is ensured that task distribution possesses the highest possibility of 

completion within a single travel effort while deploying for a round trip under a fixed, estimated 

time range and receiving an equal footing of resource allocations for all participating node 

points. 

 

FORMULATION OF MODELLING PARAMETERS 

 

The first phase is the creation of quality initial solutions, whereas the second phase consisted of 

improvisation of the initial solution.  The first phase involves plotting a set of the route into an array list, 

including the pick-up points to their nearest vicinity and the initial traversal routes among participating 

depots.  For the second phase instance, local search theories are implemented in a manner of swapping 

candidates for better solution generation and the relocation of pick-up routes in the same or different 

depot with the intention of intensification and diversification of search space optimization. The genetic 

operators and their modified role in generating solution steps are discussed as the following. 

 

 

a) Initialization: Random population initialization with the probable distribution. 

b) Representation: Assignment of each individual of the customers to the depots for that particular 

population.  

c) Elitism: The individuals from each population are paired with the prime fitness candidate.  

d) Selection: This implementation applies tournament search criteria, where the prime 5 randomly 

selected individuals are picked as the future parent chromosome.   

e) Crossover: Each inherited parent chromosome contains the probability of experiencing 

crossover.   

f) Mutation: Individuals will proceed with mutation under a certain probability rate as soon as the 

new population is initiated through selection and crossover.    

g) Substitution: The initial population is interchanged with the current generated individual 

replacement. 

h) Repositioning: Interchanges were done for certain variables in the chromosome, for example, 

the position of the customers.  Repositioning consisted of 2 types, namely insertion and 

swapping.  Considering r represents serviceable deployment paths for a single travel cycle, and 

n/r consisted of median customer engagement for a single travel cycle.  

• Insertion move:  Involves the selection of individual customers where they will be 

interchanged to a new position when a better candidate solution is generated.  The 

insertion move is represented by n (r - 1) n/r = n 2 (1 – 1/r).    

• Swapping move: Exchanging two engaging customers with their respective paths.   

These exchanges could be performed randomly.  The complexity for swapping is 

represented by [n (n -1) / 2] × 2 (n / r).   
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The next graphics illustrates the swapping strategy of chromosome activities to generate quality 

solutions to be inherited next in line.  The swapping involves customer positioning when a better 

alternative or shorter route is allocated within the process.  The selection of better customer allocation 

occurs between 2 routes and is executed in iteration until the fulfilled criteria are achieved. 

 

  

Route 1 is made up of Clients 1 and 2, and 

Route 2 is made up of Clients 3, 4, and 5.  

Insertion is done for customer 3 in Route 1 

before customer 1 after customers 1 & 2 is 

considered a better quality solution. 

 

 

The new route after Customer 3 is inserted into Route 

1 is comprised of Customer 1-2-3 and a depot. 

  

 

A cross-transfer is performed for Customers 

1 and 4 when exchange testing is performed 

with Customers 1 and 4 with Customer 2 of 

Route 2 identified as compatible.  The route 

would then be combined under a single 

traverse. 

 

Following the move, the new route 1 included the 

depot and client 1-2-3-4-5. 

 

Figure 2:  Representation of an insertion movement amongst the possible solutions. 
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3 

1 2 Route 1 

Route 2 
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3 
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D 

Route 1 
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1 5 Route 1 

Reverse order 

4 5 

3 

1 2 
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The next figure continues into the cross-over process between the interjection routes.   

   

 

   

Crossover is done for customers 1 and 4, where 

their current position are interchanged between 

their respective routes. 

Once the transition has begun, Route 1 includes 

customers 2-3-4 and Route 2 is represented by 1-

5-6. 

 

Figure 3:  How crossover move is performed between interjecting routes. 

  

Multi-Depot Scheduling Model 

 

The notations applied to follow the hypothesis cases for the combination of the routing distance 

involved in crossing a single path across all sectors. 

  

∑ ∑ ∑ 𝑐𝑖𝑗

𝑛

𝑗=0

𝑛

𝑖=0

�̅�

𝑘=1

𝑥𝑖𝑗𝑘  (1) 

min
𝑘∈𝐾

∑ 𝑣𝑖𝑗

(𝑖,𝑗)∈𝐸

𝑦𝑖𝑗𝑘 

Where: 

V = vehicle speed, 

Y = decision variable from point me in front of point j on the path of the 

vehicle k, 

E = transport capacity. 

(2) 

∑ ∑ ∑ 𝑐𝑖𝑗

𝐾

𝑘=1

𝑛+𝑚

𝑗=1

𝑛+𝑚

𝑖=1

𝑥𝑖𝑗𝑘 

Where: 

 N = Cluster of participating vehicles,  

M = Number of customers involved in this single passage cycle,  

K = vehicle set on a particular path. 

(3) 

∑ ∑ 𝑥𝑖𝑗𝑘

�̅�

𝑘=1

𝑛+𝑚

𝑖=1

= 1 (𝑗 = 1, … , 𝑛) 

 

∑ ∑ 𝑥𝑖𝑗𝑘

�̅�

𝑘=1

𝑛+𝑚

𝑗=1

= 1, (𝑖 = 1, … , 𝑛) 

 

Where: 

N = Participating array of vehicles,  

(4, 

5) 

6 5 

1 

2 3 

Route 1 

Route 2 

4 

D 
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4 
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1 

D 
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M = Number of the involved customer for that single traversal cycle,  

K = vehicle set on a particular path. 

 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑖∈𝐼∪𝐽𝑘∈𝐾

= 1, 𝑗 ∈ 𝐽 

Where: 

 J = Path of sets represented within point j,  

K = vehicle setting in a particular path,  

K = traveling vehicle for a particular path. 

(6) 

−𝑧𝑖𝑗 + ∑ (𝑥𝑖𝑢𝑘 + 𝑥𝑢𝑗𝑘)

𝑢∈𝐼∪𝐽

≤ 1, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾  

Where: 

U = Reserve variable for sub-route propagation discarding constraints, 

I = Total set representing all depots, 

J =Total set representing all customers, 

K = Total set representing all vehicles. 

(7) 

𝑠𝑖,𝑗 = 𝑐1,𝑗 + 𝑐𝑗,1 − 𝑐𝑖,𝑗  

Where: 

C1, j = Propagation path among the initiating depot and customer j,  

C1, j  = Sum of deployment intervals among customer I and j,  

Cj, 1  = Total number of propagation paths among customer j and the targeted 

depot 

(8) 

 ∑ ∑ 𝑥𝑖𝑗𝑘
�̅�
𝑘=1

𝑛
𝑖=0 = 1, 𝑗 = 1, … , 𝑛 

 

Where �̅� = Traveling vehicle in that particular arc. 

 

(9) 

∑ 𝑥𝑖𝑗𝑘

𝑛

𝑖=0

− ∑ 𝑥𝑗𝑖𝑘

𝑛

𝑖=0

= 0, 𝑗 = 0.1, … , 𝑛; 𝑘 = 0, 1, … , �̅� (10) 

∑ 𝑥0𝑗𝑘

𝑛

𝑗=1

≤ 1, 𝑘 = 1, … , �̅� (11) 

𝑦𝑖𝑗 + 𝑧𝑖𝑗  ≤ 𝑄 ∑ 𝑥𝑖𝑗𝑘

�̅�

𝑘=1

, 𝑖, 𝑗 = 0, 1, … , 𝑛 (12) 

∑ ∑ 𝑑𝑖𝑗

𝑛

𝑗=0

 𝑥𝑖𝑗𝑘  

𝑛

𝑖=0

≤ 𝐿, 𝑘 = 0, 1, 2, … , �̅� 

 

 

Where: 

D = demand load, 

L = loaded capacity. 

 

(13) 

𝑥𝑖𝑗𝑘 ∈ {0, 1}, 𝑦𝑖𝑗 ≥ 0, 𝑧𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 0, 1, … , 𝑛, 𝑘 = 0, 1, … , �̅� (14) 

  

The formulation of multi-depot dispatch instance of this problem instance is done with the following 

delimiters in mind:  Constraint (1) is the minimization of the objective function, Constraint (2) ensures 

the maximization load proportion for the least efficient path where vehicle velocity is represented by the 

load proportion itself, Constraint (3) represents the minimization of the total cost, Constraint (4, 5) 

maintain the integrity ratio of 1 customer per 1 vehicle servicing from starting point i and designated 

point j respectively, Constraint (6) each customer are designated to a particular route, Constraint (7) 

states that the interiority of a customer to a route should the customer is not situated in the vicinity of the 
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targeted depot in the array of customer allocation, Constraint (8) is the summation of travel distance 

among the depots and customers,  Constraint (9) states that each node is frequented by only 1 vehicle, 

Constraint (10) makes certain that each mobile vehicles would arrive & depart from each port that it 

serves, Constraint (11) restricts utilization of k  ̅ vehicles at certain deployment times, Constraint (12) 

restricts the demand’s procurement and dispatch only through arcs included with the solution, Constraint 

(13) limits the maximal coverage within a certain routing schedule, and Constraint (14) represents the 

default of the decision variable. 

 

 

Chromosome Representation 

 

The chromosomes for the MDVRP solution are represented by path representation in the arrangement of 

the priority array list.  
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Figure 4:  An example of chromosome representation containing 1 vehicle, 4 customers, and 8 depots. 

 

 

Tournament Selection 

 

Tournament selection is applied via the running of several randomization population 

assortments where the candidate with the most desirable fitness is picked to proceed with 

crossover.  Tournament selection is selected due to its independence of the scaling of the genetic 

algorithm and works on parallel architectures.  

 

1: Tournament size, k is randomly aggregated from the population  

2: From the tournament search, allocate the best individual with probability p  

3: Identify the runner-up best individual with probability, p* (1-p) 

4: Pick  the 2nd runner up best individual with probability p* ((1-p) ^2) 

 

Figure 5:  Conceptualization steps representing tournament selection.  

 

Crossover 

The crossover operation generates a trial vector through the substitution of particular targeted vector 

parameters residing among the correlating randomly generated solution vector.   

 

Behavior functions during the crossover phase are iterated as the following. 

1. Regulate the mutation value which is proportional to the problem. 

2. A single route is selected randomly. 

3. The numbers related to the customers' genes are considered randomly from the selected route 

in the previous step. 

4. The replacement gene is filled after the first gene.  The entire next genes other than those 

replaced ones are taken for the next chromosome generation. 
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 Before crossover  After crossover 

P 

 

8 1 3 5 2 4 6 7 9 
 

C 

 

1 3 5 7 6 9 2 4 8 
 

P1 

 

8 9 1 2 6 
 

C1 

 

9 7 2 3 6 

  

P2 

 

8 9 2 2 6 
 

C2 

 

9 7 1 3 6 
 

P3 

 

8 9 2 1 6 
 

C3 

 

9 7 2 2 6 
 

P4 

 

8 9 2 1 5 3 5 4 7 
 

C4 

 

9 7 2 3 6 1 4 5 8 
 

 

Figure 6:  Examples of primary crossover strategy involved in interjection routes. 

 

Crossover swap between initial parent chromosomes (P, P1, P2, P3, P4) and child chromosome (C, C1, C2, 

C3, C4).  To avoid problems such as premature convergence aside from improving the assortment for 

solution steps, the crossover probability in the MDVRP-GA proposed is done according to sequential 

arrays during the selected phases.   

 

Trial (j) G+1 = {v (j) G+1, Rand (j) ≤ CR or j = randn(i) 

 

Trial (j) G+1 = { v (j)G+1, rand (j) ≤ CR or j = randn(i) 

   

Chrome (I, j) G, Rand (j) > CR and j ≠ randn (I) 

 
Where G = current iteration quantity and the probability value of the crossover factor, CR ∈ [0, 1].   Each 

parameter contains weightage to the crossover probability factor.  

 

𝐶𝑅=CR min + G *  
𝐶𝑅𝑚𝑎𝑥 − 𝐶𝑅𝑚𝑖𝑛 

𝑀𝐴𝑋𝐺𝐸𝑁
 

 

Where CR min is the probability of the least crossover rate, CR max is the probability of the topmost 

crossover rate, and G is the biggest iteration number permitted across each cycle.  MAXGEN is the highest 

number of permissible iterations representing each cycle.   

 

 

i. Mutation strategy 

The basis for the mutation steps applied is to revive genetic varsity to prevent local optima 

entrapment.  The proposed approach attempts to improvise the probabilistic search optimizing 

features for evolutionary computation to improve the optimization of routing, and scheduling models 

with the stipulation of reduced cost and affluent delimiters such as time windows in locating a better 

distribution chain.  This generation is mutated n-1 where the iteration undergoes subsequent 

application of insertion, inversion, and swapping. 

Swapping operator: Two points are selected at random where the partial gene composition 

undergoes interchange with the partial gene composition.  The swap operator randomly picks two 
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organisms in the solution vector i and j, where i≠j.  This operator is used to select critical node sets 

at random, where this position would eventually be swapped.  The application of the swapping 

operator sustains the obtained neighboring information all the while retaining broken link order.   

 

Swapping points, p1=9 and p2=2 

 

1 2 3 4 5 6 7 8 9 
 

 9 2 3 4 5 6 7 8 1 
 

parent  child 

 

Figure 7:  Individual gene trait swapping criteria between participating chromosomes. 

 

 

SHORTEST ROUTE CALCULATION HEURISTICS 

 

The Haversine distance metric is selected as the main evaluation metric to represent distances on a curved 

surface, apart from estimating the curvature of the involved route (Anisya & Swara, 2017).  The metric 

quantifies the least distance achievable among two nodes along the equatorial line depending on the fixed 

latitudes and longitudes representing the location.  Before applying the shortest distance metric, several 

hypotheses had been taken into account as decisive criteria after each successful iteration: (i) vehicle load 

is unaltered and premeditated, (ii) the number and location of depots are made known earlier, (iii) 

number and location of customers are also predefined, (iv) traveling velocity for the vehicle is constant, 

(v) cost of transportation relies on the total distance covered, and (vi) symmetrical network representing 

in the transportation routes.   

 

The Euclidean distance is preferred as the distance calculator for this problem instance, where Haversine 

formulation is applied in the approximation of real-world location between 2 points on an equatorial 

point.  Haversine distance approximation is averaged based on the following formulation: 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝜃)  = 𝑠𝑖𝑛2 𝜃

2
 

 

The next equation translates the formulation into a linear form. 

Assumption: Radius of earth’s surface = 6371km 

a = sin²(
φB − φA

2
) + cos φA * cos φB * sin²²(

λB − λA

2
) 

C = 2 * atan2 (√ a, √ (1−a)) 

d = R ⋅ c 

 

Where: 

φ = latitude, λ = longitude, and R = earth’s radius (6371 km) 

 

Some assumptions were also made known beforehand related to the implementation technique involved 

to approximate real-world distance from 2 points (point A to B) along an equatorial plane: (i) Selection 

of key points to calculate distance: the travel distance along the coastal areas of disaster-prone layout, 

consisted of red zones for the annual flood occurrence, (ii) Getting straight line, road distances: 

assumption of the geometrically straight line that can be visualized along the route path, and (iii) Result 

analysis: Bisection of road distance along the straight-line distance. 

 

DATASET ANNOTATION 

The fundamental disaster strategy situation selected is the flood mitigation process, where a routing 

schedule is targeted for flagged areas that are deemed potential to be struck with flash floods during 

monsoon season, where the identified location is targeted along residential areas near river banks that are 
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deemed risky to experience overflowing.  The research foundation references Cordeau's work on 

MDVRP instances to customize the testing dataset. 

 

PROBLEM CHARACTERISTICS 

The routing distribution cycle consisted of 33 pick-up cities and 23 targeted participating depots which 

are scattered in the vicinity or at the epicenter of the pick-up sites.  The pick-up cities have a fixed 

capacity for relief commodities.  The main cities in the region are selected as the distribution depots of 

traversal.  Table 3.4 on the next page represents the coordinates in X-Y for the participating locations 

and traversable routes with respective with their distance from each other.   

 

Simulated Problem Instances 

A program script dedicated to generating multi-depot instances for the flood risk demography areas is 

coded in Java based on the parameter variables representing Cordeau's 23 instances.  This script produces 

simultaneous problem instances and solution files from the selected contents consisting of p2, p3, p5, p9, 

p12, p15, p18, and p21.   

Table 2:  Dataset parameter variables applied in the flood risk routing scheduling 

Parameters/Instances 
Total num. of 

customers 

Total num. 

of depots 

Num. of 

vehicles in 

each depot 

Vehicle 

capacity 

(kg) 

Final 

Solution 

p02 50 4 2 160 487.83 

p03 75 5 3 140 667.89 

p05 100 2 5 200 811.18 

p09 249 3 12 500 2012.55 

p12 80 2 5 60 1415.26 

p15 160 4 5 60 2767.34 

p18 240 5 5 60 4137.26 

p21 360 5 5 60 6204.52 

 

 

MAPPING THE PARTICIPATING DEMOGRAPHY 

A Java program script is coded as a go-mapping plot tool replacing Google Maps' reliability in portraying 

the actual critical potential depot location for the multi-depot traversal.  The heat map of flood-prone 

areas is devised based on an analysis of the Department of Irrigation and Drainage (DID) report on heavy 

precipitation areas for the past 5 years, ranging from 2017-2021.  Only areas that portray water levels 

within 0. 3-1. 5m after a heavy rain without immediate receding is deemed as a flood risk demography 

study for this investigation, where the prominent pattern exhibits a higher precipitation tendency for 4 

divisions, mainly Miri (2017, 2018), Sibu (2020), Betong (2019), and Kuching (2021). 

 

 

i. Demography selection 

• Postcode geolocation description:  Allocation of postal codes is done to indicate the existence 

of the geographical location of a populated area.   

• Data collection: Analysis is performed on the availability of existing distribution centers or past 

operational rooms such as the school compound and town hall where better dissemination of 

relief efforts is conducted.  Route annotation would go through a designated central point, where 

the transportation would eventually pass through all sub-node points. 

• The distance among traveled nodes:  It is ensured that task distribution possesses the highest 

possibility of completion within a single travel effort while deploying for a round trip under a 

fixed, estimated time range and receiving an equal footing of resource allocations for all 

participating node points. 
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ii. Node disposition 

With the obtained precipitation data from the Meteorological Department (2010-2018), the area with 

a higher risk of flood is identified.  54 nodes are selected based on their corresponding traits with 

the main nodes, among the decided points include Bintulu (11), Tatau (3), Mukah (4), Dalat (5), 

Sarikei (7), Sibu (20), Kanowit (6), Kapit (3), and Song (4).  In the final dataset, 45 areas are fixed 

as the node points after taking into consideration the relevancy of several sub-district aside from 

removing redundancy points. 

 

 
 

Figure 8: Location of designated depot across the 

strategic flood-prone locations in the simulated 

demography 

 

 
 

Figure 9: Location of targeted customers across 

the strategic flood-prone locations in the 

simulated demography 

 
 

 

Figure 10: Plotted designated route using shortest path 

distance measure for the flood-prone locations along the 

round trip coverage 

 

 

 

DATA INSTANCE ANNOTATION 

 

Cordeau's (1997) dataset instance is selected as the proprietary reference for this approach.  The proposed 

computational modeling reproduces a schematic delineation of a multi-level traversal area for the 

sampled demography. Testing reflective the flood relief distribution scheduling simulation model is 

conducted on 8 main problem instances, collectively p02, p03, p05, p09, p12, p15, p18, and p21.  

 

Table 3:  List of predetermined modeling variables for the custom problem instances 

 

p 
Num. of 

customers 

Num. of involving 

depot 
Num. of vehicles Vehicle capacity Initial cost 

02 50 4 2 160 487.83 

03 75 5 3 140 667.89 

05 100 2 5 200 811.18 

09 249 3 12 500 2012.55 

12 80 2 5 60 1415.26 

15 160 4 5 60 2767.34 

18 240 5 5 60 4137.26 

21 360 5 5 60 6204.52 
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RESULTS 

 

The simulation program code is done with Java in Eclipse, with an i7-8550 CPU with several execution delimiters 

being imposed.  The following table illustrates the parameters highlighted in the study.   

 

Table 4:  Parameter variables for the proposed framework 

Experimented Variable Constant Variable 

Elapsing time: 50000 m/s 

Population size, NP: 1000 

Generation number: 1000 

Rate of crossover, CR: 0.05 

Crossover factor: 0.05 

Rate of mutation: 0.05 

 

 

The scale of the problem instance is determined as follows. 

 

Table 5:  Instance size for each dataset category constituted by the number of customers and 

participating depots 

Type Problem Instance 

Small p2, p3, p5 

Medium p7, p9 

Large p12, p15, p18, p21  

 

The problem modeling takes into consideration the constant variables and their influence on routing complexity 

be it the completion time or total coverage within a certain elapsing time.  As with MDVRP problem states, 

positioned vehicles start and conclude at the same depot.  Table 2 illustrates the comparison between normal route 

allocation and the application of the shortest path algorithm.  From the proposed route, the total traveling distance 

when a round trip is achieved is approximated to be 3006.4km as compared when the total accrued distance 

without applying the shortest distance selection metric by the study which totals around 8387.2km. 

 

Table 6:  Comparison of actual round trip distance for a single deployment assuming the vehicle 

traverses through all nodes 

Single Trip (without 

shortest path 

approximation) 

Total overall projected deployment 

distance (assuming all node points is 

served at a specific time) 

45 critical traversal point = 4193.6 km 

Total 8387.2 km (round trip) 

Total serviceable areas (no duplicates) 43 critical traversal point = 3859.9 km 

Total 7719.8 km 

 

Shortest Path 

Algorithm for a 

Single Trip 

Calculation: 

Starting Point: Limbang 

Ending Point: Bau 

Limbang (0.0 Km) -> Marudi (199.2 Km) -> Miri (235.0 

Km) -> Bintulu (436.5 Km) -> Tatau (492.2 Km) -> Mukah 

(635.6 Km) -> Dalat (676.8 Km) -> Julau (902.1 Km) -> 

Pakan (968.9 Km) -> Betong (1035.7 Km) -> Sri Aman 

(1110.3 Km) -> Lubok Antu (1196.1 Km) -> Simunjan 

(1403.4 Km) -> Serian (1432.0 Km) -> Bau (1503.2 Km) 

 

Total 3006.4 km (round trip) 

 

 

Table 7:  Final result of the simulation run 
 

Problem 

instance 

Population size 

(NP) 

Mutation 

rate 

Crossover 

rate (CR) 

Completion time 

(ms) 

Fitness 
Cost 

Average Best 

p02 1000 0.05 0.05 41000 707.536 707.152 487.83 

p03 1000 0.05 0.05 38000 719.889 719.703 667.89 

p05 1000 0.05 0.05 36000 656.530 655.973 811.18 

p09 1000 0.05 0.05 35000 638.096 637.891 2012.55 

p12 1000 0.05 0.05 34000 686.211 685.562 1415.26 

p15 1000 0.05 0.05 35000 661.598 660.148 2767.34 

p18 1000 0.05 0.05 35000 673.884 673.457 4137.26 

p21 1000 0.05 0.05 37000 706.150 705.141 6204.52 
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As with MDVRP problem states, positioned vehicles start and conclude at the same depot.  From the proposed 

route, the total traveling distance when a round trip is achieved is approximated to be 3004km.  The number of 

depots does not affect the allocation speed, however, increased vehicle frequency would react in parallel with the 

number of the participating depot as when more depot is simulated across the participating sectors the execution 

time obtained as compared with less depot allocation paired with less vehicle deployment.  In terms of algorithm 

comparison, the execution speed for solution generation is rapid until a stagnation point is achieved, where the 

process halts and no longer extends in growth even with a further increment in population size.  The fitness value 

will be lowered when the number of generations increases. The comparison between average and best fitness 

always displays a slightly lower value achieved by best fitness.  This shows that the search space during the 

crossover strategy implementation is not explored enough.  There are little to no variation values between both 

end fitness values.  The benefits of a constant parameter can be seen if all the resources at the initiating point are 

the same, where should the uncertainty factor is involved in the growth rate upon achieving a certain number of 

generations the fluctuation & decrement would be temperamental.  Some experiments on incrementing crossover 

threshold with the same parameter instance indicated only certain changes in fitness value could be observed only 

if the population size is extended exponentially.    

 

   

 
Figure 11:  The fitness value for the 8 tested instances 

 

 

    
p02 p03 p05 p09 

    
p12 p15 p18 p21 

Figure 12:  Output value of the simulated run for the tested instances (p02, p03, p05, p09, p12, p15, p18, p21) 
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CONCLUSION 

 

This paper performs an investigation of the application of multi-depot dispatch based on VRP instances for 

distribution purposes involving the transportation of relief items for highly risky areas as an effort to augment the 

existing preparedness phases in managing unforeseen disasters.  Through applying the proposed genetic 

computation approach and route optimization measures, it is concluded that the modified genetic algorithm 

combined with the Haversine distance measure could assist in improvising better route selection features based 

on the retrenching of participating route distance.  Some of the suggested endeavors already in the works is an 

improvement of the search space during the selection & mutation strategies by embedding perpendicular measures 

such as route relocation strategies and classifying a better-optimized vertex to highlight the priority vertex points 

in the distance matrix to formulate a better simulation of neighboring nodes crucial in annotating shorter round 

trip distance.  It is also suggested for further investigation that adaptive measures be implemented into parameter 

selection measures to prevent an unstable fitness trend and to observe a better crossover to generate featured 

solution chromosomes.  It is a good recommendation to augment optimization measures for exploration and 

exploitation purposes involving route latency, better cost function handling, and rapid minimization of local 

optima for generated solution steps.   
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