
ISSN: 2289-7844 | e-ISSN: 0127-9750 Journal of ICT in Education (JICTIE)
DOI: https://doi.org/10.37134/jictie.vol10.2.9.2023 Volume 10, Issue 2, Pages 142-154, 2023

142

Research Article

Transitioning from Scratch to Java: A Mixed Method
Investigation into Students' Learning Processes

Siti Sakinah Mohd Yusof1*, Chow Lai Kim2, Indrani Gopal1, Julia Ahmad3,

Jun Yasmin Ahmad3, Sulaiman Abd Anter4
1Unit Sains Komputer, Kolej Matrikulasi Perak, Perak, Malaysia; bm-1621@moe-dl.edu.my*, bm-1466@moe-dl.edu.my

2Unit Kimia, Kolej Matrikulasi Perak, Perak, Malaysia; bm-1444@moe-dl.edu.my
3Unit Bahasa Inggeris, Kolej Matrikulasi Perak, Perak, Malaysia; bm-1473@moe-dl.edu.my, bm-1594@moe-dl.edu.my

4Anbar Technical Institute, Middle Technical University, Al Anbar, Iraq. sulaima699n@gmail.com

Received: 31 October 2023; Revised: 21 November 2023; Accepted: 19 December 2023; Published: 29 December 2023

*corresponding author

Abstract

This research examines the transition from Scratch to Java programming, highlighting high
achievement among participants. The study includes 70 students and utilizes mixed methods,
combining quantitative analysis and qualitative narratives. Findings demonstrate the effectiveness of
Scratch Visual Teaching Aids (VTA) in developing educational games, understanding algorithm
concepts, and improving programming projects. Students' attitudes towards Scratch VTA show
increased interest, concentration, and enjoyment in learning. Quantitative analysis indicates positive
tool capabilities (mean scores ranging from 3.25 to 3.46). Qualitative narratives reveal varying
perceptions of the transition, with prior programming knowledge influencing the shift. Challenges
include adapting to the learning session and mastering Java's syntax and concepts. This study enhances
programming education practices, providing recommendations for educators during the Scratch-to-
Java transition.

Keywords: programming education, algorithm, Scratch, Java, visual teaching aid

INTRODUCTION

The transition from Scratch to Java programming represents a significant shift in students' learning
processes within the field of computer programming. Scratch, a visual-based programming
environment, allows students to explore programming concepts through a block-based interface. In
contrast, Java programming requires students to engage with text-based coding, utilizing syntax,
classes, and functions. This transition poses both opportunities and challenges for students as they
navigate new programming concepts and languages (Kao et al., 2022).

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

143

Understanding the learning processes that students undergo during this transition is crucial for
educators and researchers to develop effective instructional strategies and support mechanisms. By
investigating the impact of transitioning from Scratch to Java programming, educational stakeholders
can gain insights into the students' achievements, the role of prior programming knowledge, and the
challenges they face during this transition. Furthermore, exploring the strategies and approaches
students employ to overcome these challenges can contribute to the development of targeted
interventions and scaffolding techniques (Kaya et al., 2021).

While previous studies have examined aspects of programming education and transitions between
programming languages (Oka Kurniawan et al., 2021; Akkaya & Akpinar, 2022; Allen et al., 2022),
limited research has specifically focused on the process of transitioning from Scratch to Java
programming. This research aims to fill this gap by providing a comprehensive investigation into
students' learning processes during this transition. By examining the interplay between prior
programming knowledge, challenges encountered, and strategies employed, this study seeks to shed
light on the factors that contribute to successful learning outcomes and inform educational practices.

Problem Statement

The transition from Scratch to Java programming poses challenges for students, and understanding
their learning processes during this transition is vital for effective pedagogical interventions (Kao et
al., 2022). While Scratch provides a visual-based programming environment, Java programming
requires a shift towards text-based programming. This fundamental shift in programming paradigms
can hinder students' learning experiences and impede their progress. Additionally, limited research
exists on the specific learning processes involved in transitioning from Scratch to Java programming
(Paiva et al., 2022).

According to a study by Mohd Adnan and Hamid (2020), achieving strong academic performance is
essential for matriculation students because it expands their opportunities in selecting fields for further
studies at the Degree level. However, insufficient proficiency in programming problem-solving skills
becomes a hurdle for students, impeding their ability to attain favourable outcomes (Mohd Adnan &
Hamid, 2020). Another study by Hai Hom et al. (2020) also highlights that impressive academic
achievements play a significant role in shaping the path of matriculation students and influencing their
decisions for higher education and prospects. Nevertheless, a lack of problem-solving skills in
programming subjects poses a challenge in making well-informed decisions.

In a study conducted by Mohd Yusof (2017), well-planned instructional strategies, incorporating
effective techniques and appropriate technology integration, are believed to profoundly affect students'
learning outcomes. This approach not only contributes to the overall development of students but also
provides many opportunities for active participation in the learning process. The use of suitable media
is considered beneficial for educators in organizing and delivering instruction systematically and
efficiently. However, meticulous planning is essential to ensure desired results, not only in terms of
the acceptance of the instructional process but also in fulfilling the instructional objectives.

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

144

Therefore, there is a need to investigate and gain insights into the students' learning processes during
this transition, including the impact of prior programming knowledge, the challenges faced, and the
strategies employed to overcome these challenges. This research aims to address these gaps in
knowledge and provide valuable insights to inform educational practices and support students'
successful transition from Scratch to Java programming. Furthermore, there is a necessity for the
provision of a visual teaching aid to facilitate students' acquisition of programming skills.

Objectives and Research Questions
 This research aims to achieve four main objectives:

● To substantiate the development of a visual teaching tool, Scratch Visual Teaching Aids
(VTA) as an indispensable resource to assist students in their programming learning process.

● To understand the role of prior programming knowledge and experience in facilitating or
hindering the transition to Java programming.

● To explore the challenges faced by students when transitioning from Scratch to Java
programming.

The corresponding research questions delve into these objectives by examining the impact of the
transition on students' achievement, the role of prior knowledge, and the specific challenges
experienced:

● What is the impact and effectiveness of a visual teaching tool as a vital resource in supporting
students' programming learning process?

● What role do prior programming knowledge and experience play in facilitating or hindering
students' transition from Scratch to Java programming?

● What challenges do students encounter during the transition from Scratch to Java
programming?

Conceptual Framework

Lev Vygotsky, a Russian psychologist, introduced the concept of the zone of proximal development
(ZPD), which refers to the gap between an individual's current developmental level and their potential
development with guidance from a more knowledgeable other (MKO) such as senior lecturers
(Vygotsky & Cole, 1978).

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

145

Figure 1: Vygotsky’s zone of proximal development (McLeod, 2018)

The ZPD acknowledges learners' capacity for higher achievement when appropriately supported and
challenged. It highlights the importance of recognizing learners' existing skills while fostering growth.
By identifying and engaging students within their ZPD, educators can customize instruction to
individual needs, providing the right balance of challenge and support for optimal learning (Vygotsky
& Cole, 1978).

Figure 2: Conceptual framework

The utilization of Scratch VTA within the zone of proximal development can provide a promising
framework for facilitating a successful transition from Scratch to Java programming, ultimately
enhancing students' programming knowledge and experience.

Significance of Study

Incorporating Scratch VTA as an intervention in this research holds great value. It offers students a
structured and interactive platform to navigate the transition from Scratch to Java programming. If
tutorials provide too much detailed information, users may be able to follow instructions but can feel
overwhelmed or bored (Basawapatna et al., 2019). By engaging in hands-on coding activities, students
can develop their programming skills and computational thinking while bridging the gap between

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

146

visual-based programming (Scratch) and text-based programming (Java). The inclusion of this
intervention allows researchers to assess its impact on learning outcomes, explore challenges faced by
students, and inform instructional strategies for successful transitions in programming education.

Scope and Limitation

This research has several limitations that should be considered. Firstly, the sample size may be limited,
which could affect the generalizability of the findings to a larger population. Secondly, the research is
limited to students from a select few classes at a Malaysian pre-university. Factors such as prior
programming knowledge, instructional approaches, or available resources may differ between
institutions or educational systems. Additionally, time constraints may affect the depth of data
collection or the ability to follow up with participants over an extended period.

LITERATURE REVIEW

Social constructivism lends credence to instructional pedagogy by defining the teacher’s role in the
teaching and learning process. This theory emphasizes the role of social interaction, collaboration, and
cultural contexts in learning (Vygotsky, 1978). This suggests that teachers should employ learner-
centred but teacher-guided teaching methods that offer appropriate scaffolding support such as the
zone of proximal development (ZPD) and their potential development with guidance from a more
knowledgeable other (MKO) such as educators at the right time to promote effective learning
(McLeod, 2018). This support assists in the development of episodic memory, enabling students to
remember and recall past events by using specific episodes or experiences as reference points. These
episodes act as benchmarks, enhancing retention and recall, and ultimately contributing to the learning
process (Kanno, 2018).

The transition from Scratch to Java programming represents a significant shift in students' learning
processes within the field of computer programming. According to Brod (2021), the influence of prior
knowledge on learning is contingent upon several determinants. Specifically, these determinants
include the activation of prior knowledge, its relevance to the learning task, and its congruence with
the new information. By examining these determinants, we can gain insights into the complex
relationship between prior knowledge and learning success. Additionally, it is crucial to note that inter-
individual and environmental factors were not considered in this analysis.

Students may encounter difficulties in grasping complex programming concepts, such as object-
oriented programming and algorithmic thinking (Végh & Czakóová, 2023). Understanding these
challenges is crucial for designing effective instructional approaches and providing appropriate support
to students. Hence, creators and assessors of programming activities should take special care in crafting
engaging elements that captivate students' attention and sustain their motivation, encouraging them to
continue programming even after completing the activity instructions (Repenning & Basawapatna,
2016). Visual and graphical information is easier to understand and remember than written words

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

147

(Strömbäck et. al., 2022). It presents complex data concisely, supported by reliable statistics, without
burdening the reader with lengthy explanations (Parveen & Husain, 2021). According to Mohd Yusof
(2017), interactive teaching aids have been found to enhance students' understanding of programming
concepts and subsequently improve their achievements in programming to optimize programming
instruction; it is advisable to incorporate these teaching aids into the learning process.

Educators engaged in teaching programming subjects, particularly to first-year students, often
encounter difficulties in molding students' comprehension of programming concepts, leading to an
impact on their problem-solving skills (Mohd Yusof, 2017). Many first-year computer science students
perceive programming skills as intricate and challenging to acquire. In addition to instructing
programming concepts, educators have made efforts to instill essential skills like critical thinking,
analytical thinking, and problem-solving in students aspiring to pursue a programming career. There
is a greater focus on syntactic, semantic, and pragmatic aspects. Despite students being able to identify
syntax, semantics, and errors in flowcharts or pseudo code, they often commit logical errors due to a
weak understanding and cognitive skills. Mohd Yusof, Kohlit, et al. (2018) reported that many students
find programming to be a challenging and difficult subject to learn and comprehend. This challenge
stems from the difficulty students face in understanding the logic of solving each programming
problem. The concepts of algorithms are particularly challenging to grasp without sufficient practice
(Mohd Yusof et al., 2022).

Ismail et al. (2018) highlighted that problem-solving is a cognitive skill essential for students,
particularly in analyzing problem scenarios and devising effective solutions. Students need to
comprehend problems, design potential solutions, and construct and implement codes during the
learning process (Ismail et al., 2018). In Mohd Yusof, Mohd Rufin et al. (2018), basic mathematical
skills, especially arithmetic, are deemed crucial for solving mathematical problems. Researchers have
established a correlation between fundamental mathematical knowledge and programming
fundamentals (Mohd Yusof, Mohd Rufin, et al., 2018; Mohd Yusof et al., 2021). Programming
necessitates proficiency in problem-solving, and students with weak mathematical abilities encounter
similar challenges in learning programming (Mohd Yusof, Mohd Rufin, et al., 2018).

According to Mohd Adnan and Hamid (2020), a more structured approach to algorithm development
can enhance the effectiveness of acquired knowledge. Algorithm development is fundamental in
programming, and students should be exposed to basics that are easy to understand and engaging,
preventing the perception that programming is overly difficult (Mohd Adnan & Hamid, 2020).
Similarly, Hai Hom (2020) affirmed that programming problem-solving involves a cognitive process
for problem-solving skills in computer science subjects, starting with reading and understanding the
questions, planning the solution, and writing the program to address it.

Incorporating gamification into the learning process was explored in a study by Papadakis and
Kalogiannakis (2019), focusing on its impact on students' academic performance and motivation. The
findings offer valuable insights for the design of game-based learning experiences. The use of
Classcraft in the educational experiment, as discussed by Papadakis and Kalogiannakis (2019), proved

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

148

interesting and partially achieved the study's objectives, particularly in motivating learning and
encouraging participation through gamified elements. The study emphasizes the significance of
motivation and engagement in education, as these factors are deemed essential for task completion and
the development of specific behaviours. Despite programming having been studied for over half a
century, the confusion between computer science and everyday computer use persists, as highlighted
in the research by Papadakis and Kalogiannakis (2019). The study underscores the importance of
addressing these challenges in the educational landscape.

METHODOLOGY

A suitable methodology for this research would be a mixed methods approach, which combines
qualitative and quantitative data collection and analysis. This approach allows for a comprehensive
understanding of the research topic by integrating qualitative narratives, quotes, and descriptions to
capture the complexities of the phenomenon, and quantitative data in the form of pre and post-test
scores to provide a numerical dimension. The qualitative data were analysed using thematic analysis,
a qualitative method, while the quantitative data were analysed using PSPP statistical techniques to
examine the differences in pre and post-test scores. By combining both types of data, the research can
provide a more robust and holistic understanding of the impact of Scratch VTA intervention. A group
of 70 students enrolled in a two-year program at a Malaysian pre-university from the 2021-2023 batch
participated in this study. These students, representing seven classes, were chosen using stratified
random sampling. The selection criteria were based on their enrolment in classes during their final
semester (4th semester). The Scratch VTA refers to the revised edition of teaching manuals that
underwent validation by two experts from Pahang Matriculation College and Sultan Idris Education
University. 210 projects were created in the second semester during practical classes that took about
two (2) hours once a week for 14 weeks. A set of questionnaires were given at the end of the second
semester while a structured interview was conducted at the end of the fourth semester. Both
questionnaire and interview data were collected through Google Forms. Four (4) lecturers from a
Malaysian pre-university validated the questionnaires and interview questions. Figure 3 shows a
research timeline diagram for this research. The terminal shape marks the start and end of this research
while the diamond shape shows the action of using Scratch VTA. The parallelograms show input (70
students) and output (210 projects). Lastly, the rectangles indicate the process of giving questionnaires
and interviews.

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

149

Figure 3: Flow of research

FINDINGS

This research collected both qualitative and quantitative data to gain a comprehensive understanding
of the topic. The qualitative data included detailed narratives, quotes, and descriptions, while the
quantitative data consisted of scores from questionnaires. The combination of both types of data
provided a holistic perspective, blending qualitative richness with quantitative insights.

The online questionnaire was built using Google Forms. It consists of three sections: Section A -
demographic information (items no. 1 to 4), Section B – tool capability (items no. 5 to 8), and Section
C - student attitude (items no. 9 to 13). Section A includes race (item no.1), gender (item no.2), program
module (item no.3), and tutorial class (item no.4). The item distribution and item code for Section B
and Section C are presented in Table 2. This questionnaire utilized a 4-point Likert scale to get specific
responses (on agreement) without the ‘neutral’ option. The scale ranges from 1 (totally disagree), 2
(totally agree), 3 (agree), and 4 (totally agree). The reliability statistic for this questionnaire is r=0.8 so
it is proven that it is well constructed and can be used to gauge the respondents' opinions.

START

70 two-year program
(2021 – 2023 batch) students

Use
Scratch VTA

210 Scratch projects

Questionnaire

Interview

STOP

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

150

According to Section A, the study included a total of 70 students, comprising 35 students from Module
3 classes and 35 students from Module 4 classes. Out of the total participants, 24 were male (34.29%)
and 46 were female (65.71%). Furthermore, 36 participants belonged to Module 2 (51.43%), while the
remaining 34 participants were from Module 3 (48.57%).

Table 1: Questionnaire items and description (Sections B and C)

Section Item code Description Mean SD

B
TOOL
CAPABILITY

B1 Scratch VTA helped me achieve my objective of developing an
educational game.

3.25 .47

B2 Blocks with different colour schemes in Scratch VTA assist me in
determining different algorithm concepts.

3.46 .50

B3 Scratch VTA is suitable for my game development project. 3.35 .51
B4 Scratch VTA is easy to use. 3.36 .54

C
STUDENT
ATTITUDE

C1 Scratch VTA makes me interested in learning algorithms programming). 3.33 .56
C2 Scratch VTA motivates me to concentrate on working on my project. 3.28 .51
C3 Scratch VTA helps to improve my understanding of different algorithm

concepts.
3.35 .53

C4 Scratch VTA promotes interaction between my lecturer and me. 3.28 .51
C5 I enjoy learning using Scratch VTA. 3.38 .54

Table 1 demonstrates the tool capability of students (respondents) that helps prepare them to transition
from Scratch to Java programming. Students who found that Scratch VTA helped them to develop
educational games had a mean of 3.25 (SD=.47), while those who found blocks with different colour
schemes in Scratch VTA assisted them in determining different algorithm concepts had a mean of 3.46
(SD=.50). Additionally, the mean for Scratch VTA found to be suitable for a game development project
is 3.35 (SD=.51), whereas the mean for Scratch VTA easy to be used is 3.36 (SD=.54). Further
examination on students’ attitude showed that Scratch VTA makes them interested in learning
algorithms(programming) with a mean of 3.33 (SD=.56), while Scratch VTA motivates them to
concentrate on their projects with a mean of 3.28 (SD=.51). A mean of 3.35 (SD=.53) exemplified that
Scratch VTA improves understanding of different algorithm concepts. It is also found that Scratch
VTA promotes interaction between students and their lecturer with a mean of 3.28 (SD=.51) and
students enjoy learning using Scratch VTA with a mean of 3.38 (SD=.54).

Table 2 outlines a structured interview consisting of five pivotal questions that delve into participants'
initial expectations, encountered challenges, and reflections on the learning process during their
transition from Scratch 3.0 to Java programming. Participants openly shared their motivations and
anticipated outcomes as they navigated this shift in programming languages. The interview
thoughtfully explored instances of challenges and difficulties faced during the transition, offering
valuable insights into the obstacles encountered along their learning journey. Moreover, participants
engaged in discussions regarding perceived similarities and differences between Scratch 3.0 and Java
programming, encompassing concepts, syntax, and problem-solving approaches. The evaluation of
participants' confidence levels in Java programming skills, in comparison to the initial stages of
transition, provided noteworthy insights, with participants attributing changes in confidence to various

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

151

factors. The interview concluded by encouraging participants to reflect on their transition experience,
providing an opportunity for them to share insights into aspects they wished they had known or done
differently.

Table 2: Structured interview questions

No Question
1 How would you describe your initial expectations and goals when you started learning Java programming after

using Scratch 3.0?
2 What challenges or difficulties did you encounter during the transition process? Can you describe specific

instances or situations that posed challenges to your learning?
3 What were the similarities and differences you noticed between Scratch 3.0 and Java programming in terms of

concepts, syntax, and problem-solving approaches?
4 How confident do you feel about your Java programming skills now compared to when you first started the

transition process? What factors do you attribute to this change in confidence?
5 Looking back, is there anything you wish you had known or done differently during the transition from Scratch

3.0 to Java programming?

Table 3 highlights the qualitative narratives and descriptions of the 15 respondents on the impact of
the transition on Java programming, the role of the prior programming language (Scratch), and
challenges during the transition from Scratch to Java programming. Generally, some respondents
indicated that the transition from Scratch to Java is difficult; while others expressed that, it is not very
difficult. In contrast, some others found it to be either scary, useful, exciting, or boring. As for the role
of the prior programming language (Scratch), switching from Scratch’s visual programming interface
to Java’s text-based syntax was difficult initially because writing error-free code demanded attention
to detail and a solid understanding of Java’s syntax rules. In addition, students were able to handle
simple coding tasks independently but they relied on tutorials for the more challenging ones. Students
who learned Scratch were more confident and found the transition to Java easier.

Finally, the responses to challenges and difficulties during the transition (from Scratch to Java) varied
from difficulty in adapting to the learning session to the fact that it took time to internalize the precise
syntax, including the proper placement of parentheses, semicolons, and curly braces. The other
challenge faced was confusion with reserved words, where students forgot to include symbols,
resulting in the Java program not running properly. Overall, the main challenge in Java programming
compared to Scratch was the need for more critical thinking and decision-making, whereas, in Scratch,
students only have to select the complete flow. In Java, students had to learn different flow patterns
for various control structures.

Table 3: Thematic analysis of interview data

No ID Impact of transition on Java Role of prior programming language (Scratch)
1 AB1A

It is hard.

Switching from Scratch's visual programming interface to
Java's text-based syntax posed initial difficulties. It took
time to learn the precise syntax and writing error-free
code demanded attention to detail and a solid
understanding of Java's syntax rules.

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

152

Table 3: Thematic analysis of interview data

No ID Impact of transition on Java Role of prior programming language (Scratch)
2

AB1B

(I am) excited. Initially, I lacked confidence when transitioning to
learning Java programming. However, through dedicated
time and effort, my confidence grew over time.

3

AB2A

I believe I will improve my Java
skills because I already have a
foundation in programming from
learning Scratch in the previous
semester.

On a scale of 1 to 10, I would rate myself at a 7 because
the use of Java has indirectly helped me gain a deeper
understanding of programming compared to my initial
experience with Scratch.

4

AB2B

It would be a little bit difficult
because I would be confused.

I can handle simple coding tasks independently, but for
more challenging ones, I still rely on tutorials for guidance
around 60% of the time.

5 AF1A I expect to enhance my Java skills
due to my prior experience with
Scratch programming during the
previous semester.

As of now, I am more confident with my Java
programming skills compared to when I first started with
Scratch.

6 AF1B Hard. It is easier because I have learned Scratch.
7 AF1C Normal. 7.5/10.
8

HB1A

The structured process in Scratch
makes it easier to use Java.

In the past, I felt less confident because I feared making
numerous errors, which would lead to stress. Now, I feel
more confident.

9 HB1B It is easy to understand. Not very confident.
10 HB2A The usage of Scratch 3.0 is easier. Slightly increased.
11 HF1A Java is boring. 70% more confident.
12 HB2B Very useful. Very good
13 HF1B I thought I would not ace it at first. I barely remember the simplest coding before. Now I can

do it without anyone's help.
14 HB2C I was a bit scared because Java was

harder than Scratch.
8/10.

15 HF1C I'd be more adept at using it 6 out of 10.

DISCUSSION AND RECOMMENDATION

The research objectives were successfully addressed through the findings. The Scratch VTA was found
to be an effective resource for assisting students in their programming learning process. It positively
affected students' programming capabilities, improving their understanding of algorithm concepts and
game development. The transition from Scratch to Java programming was influenced by students' prior
programming knowledge, with those familiar with Scratch finding the transition easier. Challenges
during the transition included adapting to the learning session, understanding Java's syntax, and the
need for critical thinking. Based on the research findings, the following recommendations are proposed
to optimize the learning experiences and outcomes for students transitioning from Scratch to Java
programming, (i) incorporate interactive visual teaching aids like Scratch VTA to enhance
programming education and support students' understanding of programming concepts, (ii) encourage
students to acquire foundational programming skills through Scratch before transitioning to advanced
languages, facilitating a smoother transition, (iii) provide targeted support to help students overcome
challenges during the transition, including adapting to Java's syntax and developing critical thinking
skills, and (iv) offer continuous guidance and mentorship from experienced instructors or peers to
assist students in overcoming challenges and building confidence during the transition. By

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

153

implementing these recommendations, students can benefit from enhanced teaching methods,
smoother transitions, targeted support, practical application of skills, and ongoing mentorship.

CONCLUSION

The research study's conclusion supports the objectives and research questions. The findings confirm
the value of Scratch VTA in assisting students with programming learning (objective 1). The
qualitative narratives shed light on the challenges faced during the transition, emphasizing the role of
prior programming knowledge and directly relating to objective 2. These findings also align with
objective 3, which explores the challenges faced by students transitioning from Scratch to Java
programming. The narratives highlight difficulties in adapting to the learning session, internalizing
Java's syntax, and grappling with reserved words. The need for critical thinking and decision-making
in Java programming, compared to the more straightforward flow-based approach in Scratch, emerges
as a significant challenge. These insights provide valuable information on the specific difficulties
encountered during the transition, informing educational practices to better support students in
overcoming these challenges.

ACKNOWLEDGMENTS

This work was supported by the Kolej Matrikulasi Perak, Perak, Malaysia.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

DECLARATION OF GENERATIVE AI

During the preparation of this work, the authors used Gen AI tools to enhance the clarity of the writing.
After using the tools, the authors reviewed and edited the content as needed and take full responsibility
for the content of the publication.

DATA AVAILABILITY STATEMENT

Data available within the article or its supplementary materials.

REFERENCES

Akkaya, A., & Akpinar, Y. (2022). Experiential serious-game design for the development of knowledge of object-oriented
programming and computational thinking skills. Computer Science Education, 32(4), 476-501.

Ismail, A., Mohd Yusof, S.S. & Ubaidullah, N. H. (2018). The impact of using visual programming environment towards college
students' achievement and understanding in programming. The International Journal of Multimedia & Its Applications.
https://doi.org/10.5121/ijma.2018.10606.

Allen, O., Downs, X., Varoy, E., Luxton-Reilly, A., & Giacaman, N. (2022). Block-based object-oriented programming. IEEE
Transactions on Learning Technologies, 15(4), 439-453.

Mohd Yusof et al. | JICTIE | Volume 10, Issue 2 (2023)

154

Basawapatna, A., Repenning, A., & Savignano, M. (2019). The zones of proximal flow tutorial: designing computational
thinking cliffhangers. Proceedings of the 11th Workshop in Primary and Secondary Computing Education, 428-434.
https://doi.org/10.1145/3287324.3287361.

Brod, G. (2021). Toward an understanding of when prior knowledge helps or hinders learning. Science of Learning, 6(1), 24.
https://doi.org/10.1038/s41539-021-00103-w.

Kanno, T. N., & Nzewi, U. M. (2018). Issues in curriculum development and implementation in Nigeria. Lagos: Foremost
Educational Services Ltd.

Kaya, Z., Kaya, O. N., Aydemir, S., & Ebenezer, J. (2021). Knowledge of student learning difficulties as a plausible conceptual
change pathway between content knowledge and pedagogical content knowledge. Research in Science Education, 1-33.

Kao, Y., Matlen, B., & Weintrop, D. (2022). From one language to the next: Applications of analogical transfer for programming
education. ACM Transactions on Computing Education, 22(4), 1-21.

McLeod, S. (2018). Vygotsky. https://www.simplypsychology.org/vygotsky.html
Oka Kurniawan, Jégourel, C., Lee, N. T. S., De Mari, M., & Poskitt, C. M. (2021). Steps before syntax: Helping novice

programmers solve problems using the PCDIT framework. arXiv:2109.08896.
Paiva, J. C., Leal, J. P., & Figueira, Á. (2022). Automated assessment in computer science education: A state-of-the-art review.

ACM Transactions on Computing Education, 22(3), 1-40.
Papadakis, S., & Kalogiannakis, M. (2019). Evaluating the effectiveness of a game-based learning approach in modifying

students’ behavioral outcomes and competence, in an introductory programming course: A case study in Greece.
International Journal of Teaching and Case Studies, 10(3), 235-250.

Parveen, A., & Husain, N. (2021). Infographics as a promising tool for teaching and learning. Journal of Emerging Technologies
and Innovative Research, 8(8), 554-559.

Repenning, A., & Basawapatna, A. (2016). Drops and kinks: Modeling the retention of flow for hour of code style tutorials.
Proceedings of the 11th Workshop in Primary and Secondary Computing Education, 76–79.
https://doi.org/10.1145/2978249.2978260.

Hai Hom, S. N., Ibrahim, H. H., Ibrahim, A., Mokhsin, M., & Abdul Talib, C. (2020) Assessment of using EZ-Prog: An easy
color schematic model for programming problem solving. ASEAN Journal of Teaching and Learning in Higher Education,
12(1). 31-41. https://ejournal.ukm.my/ajtlhe/article/view/39206

Mohd Yusof, S. S. (2017). Keberkesanan penggunaan alat bantu mengajar interaktif bagi mengurangkan kesalahfahaman
konsep pengaturcaraan dalam kalangan pelajar. [Master dissertation, Universiti Pendidikan Sultan Idris]. UPSI Library.
https://ir.upsi.edu.my/detailsg.php?det=3350.

Mohd Yusof, S. S., Ilias, K., Jabar, J., Ahmad Bakary, S. & Syed Nordin, S. A. (2021). Aplikasi alat pengarang grafik
flowgorithm dalam meningkatkan kefahaman dan minat dalam pembelajaran algoritma pengaturcaraan pelajar matrikulasi.
Jurnal Penyelidikan Dedikasi, 19(2), 62-81.

Mohd Yusof, S. S., Ismail, A. & Abdul Aziz, N. A. (2022). Learning algorithm concepts by developing them in educational
gameplay: From the perspective of college students in Perak. Journal of Information and Communication Technology in
Education, 9(3), 30–40. https://doi.org/10.37134/jictie.vol9.sp.1.3.2022.

Mohd Yusof, S. S., Kohlit, M., Maarof, F., & Abu Bakar, A. Z. (2018). Keberkesanan penggunaan alat bantu mengajar interaktif
dalam pengajaran dan pembelajaran asas pengaturcaraan. Jurnal Penyelidikan Dedikasi, 15, 62-79.

Mohd Yusof, S. S., Mohd Rufin, S. M., Zohedi, A. K., & Ng, C. H. (2018). Tinjauan penggunaan bahasa pengaturcaraan secara
visual bagi mengurangkan kesalahfahaman konsep pengaturcaraan dalam kalangan pelajar. Jurnal Penyelidikan Dedikasi,
14, 150-163.

Strömbäck, F., Mannila, L., & Kamkar, M. (2022). A weak memory model in Progvis: Verification and improved accuracy of
visualizations of concurrent programs to aid student learning. Proceedings of the 22nd Koli Calling International
Conference on Computing Education Research, 1-12.

Végh, L., & Czakóová, K. (2023). Possibilities of using games in teaching and learning the basic concepts of object-oriented
programming. Proceedings of the 17th International Technology, Education and Development Conference, 5329-5334.
https://doi.org/10.21125/inted.2023.1383

Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological processes. Harvard University Press.
Mohd Adnan, Z. & Hamid, J. (2020). Kesan model Polya dalam pembelajaran algoritma dalam kalangan pelajar: Satu kajian

kes. Journal of Humanities and Social Sciences, 2(3), 88-92. https://doi.org/10.36079/lamintang.jhass-0203.140.

	Problem Statement
	Objectives and Research Questions
	Significance of Study
	Scope and Limitation
	LITERATURE REVIEW
	METHODOLOGY
	FINDINGS
	DISCUSSION AND RECOMMENDATION
	CONCLUSION
	REFERENCES

