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ABSTRACT 

 

Three-dimensional printing (3DP) is emerging as a groundbreaking technology in the 

pharmaceutical industry, promising transformative advancements in drug formulation and 

delivery. This innovative method enables the creation of personalized medications with precise 

dosages and tailored release profiles, addressing the limitations of traditional mass production. 

Despite its promising potential, the widespread adoption of 3DP in medicine faces several 

challenges. The primary issue is the lack of comprehensive regulatory guidelines, which creates 

uncertainty regarding standardization and quality control. Ensuring the quality and stability of 

3D-printed drugs is another critical concern, with non-destructive evaluation methods like 

Near-Infrared and Raman spectroscopy being explored for real-time quality assessment. 

Additionally, current 3D printers often do not fully comply with Good Manufacturing Practice 

standards, which are essential for ensuring product consistency and safety. This study provides 

a comprehensive examination of recent trends and innovative approaches in 3DP technology 

applied to drug delivery systems, highlighting both the progress made and the challenges that 

need to be addressed. By examining current methodologies, materials, and applications, the 

research aims to elucidate the evolving landscape of 3D-printed pharmaceuticals. The study 

focuses on evaluating the feasibility, efficacy, and scalability of diverse 3DP approaches in 

developing personalized and precision drug formulations. These insights are intended to 

enhance the field of pharmaceutical sciences and support patient-centric healthcare by offering 

more customized and effective medication solutions. Through a comprehensive analysis of 

innovative 3DP techniques, the research seeks to contribute to the advancement of drug delivery 

systems, potentially revolutionizing the way medications are produced and administered. 

 

Keywords: 3D printing technology, Inkjet printing, Extrusion-based printing, Powder-based 

binding method, Laser based 3D printing 

 

 

1. INTRODUCTION  

 

Three-dimensional printing (3DP) is regarded as a groundbreaking advancement in the 

pharmaceutical and biomedical industries (Li et al., 2023). This versatile technology facilitates 
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the precise manufacture of various devices, including novel dosage forms and engineered 

tissues, significantly impacting drug delivery, organ engineering, and disease modelling. As 

one of the fastest-growing fields in technology and science, 3DP continues to expand its 

applications (Li et al., 2023; Rani et al., 2023).  

The International Standard Organisation defines 3DP as the fabrication of objects through 

material deposition using a print head, nozzle, or similar technology. Unlike traditional 

subtractive and formative manufacturing methods, 3DP is an additive manufacturing (AM) 

technique, building objects layer by layer from 3D models (Izdebska-Podsiadły, 2022). This 

approach enables the rapid and cost-effective design of personalized medications. Also known 

as layered manufacturing or rapid prototyping, 3DP originated in the early 1980s with Charles 

Hull's invention and gained prominence around 2012. Notably, the technology's pharmaceutical 

application began in the early 1990s at MIT, leading to innovations like the FDA-approved 3D-

printed tablet "Spritam" in 2015 (Izdebska-Podsiadły, 2022; Jakus, 2019).  

Since 2012, the application of 3DP in science and engineering has grown, particularly in 

creating solid dosage forms for individualized therapy, transdermal drug delivery, and 

biomedical devices, including implants and surgical models. The convergence of AM and 

bioprinting has been notable, with advancements in materials science facilitating the 

customization of medical products (Parhi, 2021; Jamróz et al., 2018). Various 3DP methods, 

such as extrusion-based printing, powder-based binding, and inkjet printing, have become vital 

to the pharmaceutical industry. This technology allows for customized drug formulations 

tailored to patients' specific needs. Such personalization extends to creating complex drug 

release profiles and unique dosage forms, offering an alternative to conventional manufacturing 

methods (Izdebska-Podsiadły, 2022).  

The adaptability of 3DP in constructing personalized active pharmaceutical ingredient 

(API) combinations is remarkable. It is used in the pharmaceutical industry to develop digitally 

controlled and individualized products, transforming concepts into prototypes using 3D 

computer-aided design (CAD) or Magnetic Resonance Imaging (MRI). Research has 

demonstrated the application of 3DP in various areas, including buccal patches, implants, oral 

dosage forms, and transdermal delivery systems. Innovative companies like FabRx Ltd. are 

pioneering 3D-printed medications, further showcasing the technology's potential (Kalyan et 

al., 2023; Tatipamula and Annam, 2022; Muhindo et al., 2023).  

The field of 3D bioprinting, which aims to create living tissue models, represents a new 

frontier in 3DP technologies. As research continues, 3DP's role in the pharmaceutical industry 

is poised to grow, offering more efficient, customized solutions for patient care (Muhindo et al., 

2023). This review explores recent advancements in 3DP technology as applied to drug delivery 

systems. It provides a comprehensive analysis of current methodologies, materials, and 

applications, highlighting the innovative approaches shaping this field. The primary focus is on 

evaluating the feasibility, efficacy, and scalability of various 3DP techniques for developing 

personalized and precision drug formulations. By examining these aspects, the review aims to 

contribute to the advancement of pharmaceutical sciences and enhance patient-centric 

healthcare.  

 

2. SEARCH STRATEGY  

 

Publications on “3D bioprinting” from 1990 to August 2023, were retrieved and 

downloaded from the database of Science Citation Index Expanded of Web of Science. 

Citespace software was used for data analysis and visualization, including the Countries, 

academic institutions, journals, authors, subject categories, keywords (most frequently used), 

references and citations of these target literatures. 
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3. DIFFERENCE BETWEEN 3D PRINTING & 3D BIOPRINTING 

 

3.1. 3D Printing 

  

  A research design for 3DP technology typically includes both qualitative and quantitative 

approaches. It starts with a literature review to identify gaps and establish theoretical 

frameworks. Experimental studies are central, involving material selection, prototyping, and 

performance testing under controlled conditions. Methodologies include additive 

manufacturing processes (FDM, SLA, and SLS) parameter optimization, and mechanical 

property analysis (Hieu et al., 2021; Izdebska-Podsiadły, 2022). 3DP technology addresses 

various medical challenges, such as creating artificial organs and skin. By directly constructing 

layers of material, this technology forms intricate 3D structures. It is utilized for printing a wide 

range of materials, including plastics, metals, polymer resins, and rubber. In the medical field, 

3DP is employed to manufacture customized implants, surgical instruments, and other medical 

devices. It also allows for the creation of hard materials to produce precise 3D objects (Figure 

1a). For example, 3DP can rapidly generate models of cancerous tumors using data from 

Computed Tomography (CT) and MRI scans. Beyond medicine, the applications of this 

technology extend to engineering, dentistry, architecture, aerospace, food, agriculture, 

education, product design, and research and development. 

 

 
Figure 1. (a) 3D printing & (b) 3D bioprinting 

 

3.2. 3D Bioprinting  

 

 3D bioprinting is an emerging technology for fabricating skin and is increasingly used for 

personalized wound treatment. This innovative approach has been successfully applied in 

regenerative medicine to address various medical issues (Zang et al., 2023; Chouhan et al., 

2019). A 3D bioprinter employs bioink containing living cells to print biomaterials, and it can 

also incorporate scaffolds to form the required structure of target tissues. This technology is 

capable of printing liquid and gel-based materials, enabling non-contact droplet printing (Figure 

1b). It has been utilized to develop tissue-like structures, including cardiac and vascular tissues, 

through the use of growth factors (Gungor-Ozkerim et al., 2018; Kalhori et al., 2022). 3D 

bioprinters can print biological materials such as bone particles, cells, organic molecules, and 

other extracellular matrices. Currently, tissues and organs created using this technology have 

shown improved success rates in surgeries. For instance, scientists have used 3D bioprinting to 

create skin layers with integrated blood vessels, reducing the likelihood of graft rejection 

(Rahimnejad et al., 2021; Diakuara et al., 2022; Thuan et al., 2023). Furthermore, the 
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application of 3DP technology offers a potential alternative for constructing effective and 

customized combinations of APIs tailored to individual patients. It is crucial to recognize that 

the field of 3DP in pharmaceuticals is rapidly evolving, with ongoing research focused on 

overcoming current challenges. As the technology progresses and regulatory frameworks 

become more accommodating, the benefits of 3DP in pharmaceutical applications are expected 

to outweigh its current limitations (Serrano et al., 2023; Polimati et al., 2022). 

 

3.3. Advantages of 3D printing technology in pharmaceutical applications  

 

 3DP technology offers numerous advantages in pharmaceutical manufacturing. It enables 

the production of personalized and patient-specific dosage forms, tailoring drug delivery to 

individual needs. The technology facilitates the creation of intricate and complex drug 

structures that are difficult or impossible to achieve with traditional methods (Al-Dulimi et al., 

2021; Nguyen et al., 2021; Nguyen et al., 2022). With precise control over drug composition, 

3DP ensures uniform distribution of APIs within each dosage unit. It supports rapid prototyping, 

allowing researchers to quickly iterate formulations and reduce time-to-market for new 

medications (Al-Dulimi et al., 2021; Beg et al., 2020; Bozkurt and Karayel, 2021; Nguyen et 

al., 2021a). Additionally, 3DP enables polypharmacy by combining multiple drugs into a single 

dosage form, enhancing patient compliance. Taste-masking capabilities make medications 

more palatable, particularly for pediatric and geriatric patients. The resource-efficient process 

reduces material wastage compared to traditional methods and supports on-demand, small-scale 

production, offering flexibility and reducing the need for large-scale manufacturing facilities 

(Beg et al., 2020; Bozkurt and Karayel, 2021; Nguyen et al., 2020; Nguyen et al., 2020a). 

 

3.4. Disadvantages of 3D printing technology in pharmaceutical applications 

 

Despite its transformative potential, 3DP in pharmaceuticals faces several challenges. A 

limited range of pharmaceutical-grade materials restricts its versatility compared to traditional 

methods (Beg et al., 2020; Hieu et al., 2020; Bozkurt and Karayel, 2021). Regulatory 

frameworks struggle to keep pace with evolving 3DP technologies, posing challenges in 

standardizing and approving 3D-printed drugs (Thuan et al., 2022; Vyshnavi et al., 2023). The 

process can be time-consuming, particularly for complex or large-scale production, impacting 

scalability. Additional post-processing steps, such as coating or polishing, add complexity to 

manufacturing. Concerns about material stability under varying storage conditions remain 

under active research. High equipment costs limit adoption among smaller manufacturers, while 

quality control challenges demand robust measures to ensure dosage consistency. Additionally, 

the open-source nature of some 3DP technologies raises intellectual property concerns, as 

unauthorized sharing of drug blueprints could occur (Beg et al., 2020; Bozkurt and Karayel, 

2021). 

 

4.  3D PRINTING RECENT APPROACHES OF DRUG DELIVERY SYSTEM 

 

3DP techniques involve the layer-by-layer deposition of material to create three-

dimensional objects designed using computer software. The design process can be conducted 

using software like AutoCAD, 3D Slash, SketchUp, Fusion 360, and Solidworks. Once the 

design is completed, slicer software such as KISSlicer, Slic3r, OctoPrint, Simplify3D, and Cura 

converts the design file (STL format) into printer-readable G-code (Mohammed et al., 2021; 

Wang et al., 2021). This software sets essential printing parameters, including layer count, infill 

percentage, offset height, layer spacing, speed, and total print time. The generated G-code is 

then uploaded to the 3D printer, which utilizes various systems, such as inkjet, extrusion, and 
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laser-based technologies, to deposit material and form the object (Dine et al., 2021). In 

pharmaceutical applications, polymeric materials like Eudragit and ethyl cellulose are 

commonly used as binder inks to formulate targeted drug delivery and controlled release 

systems. Additionally, the use of ink formulations for color printing can enhance patient 

compliance, particularly among geriatric and pediatric patients, by making the medications 

more visually appealing and easier to differentiate (Mohapatra et al., 2022; Tatipamula et al., 

2021; Tatipamula et al., 2022). 

 

4.1.  Extrusion-based printing 

 

Extrusion printing technology, which began to gain traction in the 1980s and became 

operational in the 1990s, encompasses two primary methods: hot melt extrusion (HME) and 

fused deposition modeling (FDM) (Madla et al., 2018; Placone and Engler, 2018). In the HME 

technique, a homogeneous solid dispersion of pharmaceutical excipients, including polymeric 

materials and plasticizers, is prepared in a molten polymer form. A drug substance is then 

incorporated into this polymeric composition. The resulting formulation ink is extruded through 

a die under high pressure and elevated temperatures, and subsequently fused and solidified to 

produce a 3D object with uniform shape, high quality, and consistent drug content. This method 

allows for precise control over the drug's distribution within the final product (Repka et al., 

2018; Prasad et al., 2019). FDM, also referred to as fused filament fabrication in some literature, 

differs from HME in that it typically results in products with lower mechanical properties and 

drug load. However, FDM is well-suited for home-fabricated manufactured goods, making it 

advantageous for personalized medication applications. One notable advantage of HME is its 

solvent-free nature and makes it an ecologically friendly production method (Prasad et al., 

2019; Dumpa et al., 2021; Rao et al., 2015).  

The late 1990s saw the introduction of thermoplastic polymers such as polylactic acid 

(PLA), polyvinyl alcohol (PVA), and ethyl vinyl acetate into the field, marking a significant 

advancement in pharmaceutical 3DP. In FDM, the drug substance is loaded into a thermoplastic 

polymeric filament and extruded through a heated printer head onto a surface, where it 

immediately hardens (Couți et al., 2024), Both extrusion methods have increased popularity for 

fabricating 3D products due to their flexibility in developing novel solid oral dosage forms with 

various geometries, complexities, and drug release profiles. Particularly, the extrusion 

technique is promising for producing amorphous form materials, which can enhance the 

bioavailability of poorly soluble drugs and improve dissolution rates (Auriemma et al., 2022; 

Gurunath et al., 2013). 

 

4.2.  Powder-based binding method 

 

Rapid prototyping using powder-based methods is gaining significant interest in the 

pharmaceutical industry due to its alignment with existing manufacturing processes and 

potential for long-term efficiency (Sen et al., 2021; Tran and Wen, 2014). This technique 

involves constructing multilayer 3DP products by spraying a binder or drug solution along with 

excipients onto a powder bed using a small Y print head in a two-dimensional manner. The 

build platform is dropped along the Z-axis according to the elevation of each layer until the 

complete structure is formed. Layers are bonded through adhesion or welding in a liquid 

solution, and unbound powder and residual solvent are subsequently removed under appropriate 

conditions to ensure proper development of the 3D product. Droplets of the binder or drug 

solution are directed onto an electrically charged element to achieve the desired charge before 

being deposited onto the substrate to form the final product (Ngo et al., 2018; Warsi et al., 2018) 

(Figure 2).  
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The powder bed 3DP method is noted for its speed and compatibility with a wide range 

of pharmaceutical substances. It produces high-quality 3D products and offers significant cost 

reductions in production. This method is particularly advantageous for fabricating drug 

formulations, immediate-release and controlled drug products. The technique’s flexibility and 

efficiency have led to its widespread adoption in pharmaceutical applications (Haritha et al., 

2019; Jandyal et al., 2022). Key factors influencing the quality of the final product include the 

selection of an appropriate binder and its concentration, as well as the particle size of the powder 

used. Proper optimization of these variables is crucial for ensuring the integrity and 

performance of 3D-printed drug products (Ibrahim and Maslehuddin, 2021). 

 
Figure 2. Schematic illustration of powder-based binding technique 

 

4.3.  Inkjet printing 

 

Inkjet printing is an innovative adoption of 3DP technology in pharmaceuticals, 

particularly effective when the starting materials are in liquid form. This technique is classified 

into two main categories: continuous inkjet (CIJ) (Figure 3a) and drop-on-demand (DOD) 

printing (Figure 3b), based on the method of droplet formation (Castrejon-Pita et al., 2013; Park 

et al., 2019). In CIJ printing, droplets are continuously generated by droplet-loading apparatus 

or a transducer, which produces a steady stream of droplets. This method allows for high-speed 

printing and is suitable for applications requiring continuous material deposition. In contrast, 

the DOD printing system converts pharmaceutical-based ink into droplets by either applying a 

voltage to a piezoelectric crystal transducer, which causes the material to vibrate, or by heating 

the formulation above its boiling point to create droplets. These droplets are then driven from 

an orifice to the printer head's nozzle, where they are deposited and solidified drop by drop 

(Samiei, 2020). The key factor in developing a formulation for the inkjet printing system is the 

performance of the carrier formulation during printing, which is heavily influenced by 

rheological parameters such as fluid viscosity, velocity, and surface tension. Additionally, the 

release profile of the drug formulation can be tailored based on the deposition pattern of droplets 

onto the substrate. The primary advantage of inkjet printing in pharmaceutical applications is 

its high precision in creating 3D drug products (Daly et al., 2015; Tatipamula, 2022). This 

technology also opens new possibilities for utilizing novel APIs and personalizing drug 

formulations. Factors influencing the fabrication of 3D drug products, such as manufacturing 

processes and material properties, are critical for optimizing this technology (Carou Senra et 

al., 2024). 
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Figure 3. Inject printing technique (a) Continuous (CIJ) & (b) Drop on demand (DOD) 

 

4.4.  Laser based 3D printing 

 

Both Stereolithography (SLA) and Selective Laser Sintering (SLS) techniques offer 

distinct advantages and face specific limitations in drug formulation and pharmaceutical 3DP. 

Despite their potential, challenges related to material selection, stability, cytotoxicity, and API 

degradation need to be addressed to fully exploit these techniques for pharmaceutical 

applications (Kafle et al., 2021; Awad et al., 2020).  

SLA: SLA employs a UV laser beam to polymerize a photosensitive polymeric liquid, 

layer by layer, to build a 3D object. The technique is noted for its high resolution, achieving 

layer thicknesses as fine as 0.2 mm, which surpasses the resolution capabilities of other methods 

(typically 50−200 mm). The precision of SLA is influenced by the duration and intensity of 

laser exposure (Figure 4a). This high resolution makes SLA suitable for producing complex 

drug hydrogels and microstructures for transdermal drug delivery applications. However, SLA 

faces several challenges: there is a lack of FDA-approved photo-polymeric resins, instability of 

printed materials due to photosensitivity, and potential leaching of entrapped molecules (Huang 

et al., 2020; Skoog et al., 2014).  

SLS: SLS is a powder-based technique where a laser beam selectively sinters a bed of 

powder material below its melting temperature. This process fuses the powder to form solid 

layers without the need for organic solvents or post-printing drying. SLS offers high resolution 

and a single-step printing process (Figure 4b). However, it has limitations, including potential 

degradation of APIs due to the laser melting process, a limited selection of compatible powders, 

and difficulty in printing hollow structures (Kruth et al., 2003; Kruth et al., 2005).  

 

 
Figure 4. The laser-based 3D printing techniques. (a) Stereo lithography (SLA) technique, & (b) 

Selective laser sintering (SLS) technique 
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In summary, while SLA and SLS techniques present valuable tools for pharmaceutical 

3DP, their respective advantages and limitations underscore the need for ongoing research and 

development to address material compatibility, stability issues, and other challenges to optimize 

their application in drug formulation. 

 

5.  3D TECHNOLOGY OF FORMULATION OF ORAL DRUG DELIVERY 

 

5.1.  Tablets 

 

The concept of 3DP for drug delivery systems was first explored in 1996, when solid 

samples were created using a desktop printer with polymers (polycaprolactone (PCL) and 

poly(ethylene oxide) (PEO)), incorporating colored dyes. This pioneering study showcased 

various construction methods and demonstrated that 3D-printed tablets could be designed to 

control drug release through erosion or diffusion mechanisms (Katstra et al., 2000; Lee et al., 

2003; Sastry and Bharadwaj, 2018) (Figure 5). The research highlighted key considerations, 

including the choice of AM process, printing parameters, and the type of release profile – 

whether immediate or delayed, and whether following first-order or zero-order kinetics 

(Alhijjaj et al., 2016; Talluri et al., 2018; Bácskay et al., 2022).  

 

 
Figure 5. 3D printing of tablets 

 

The advent of 3DP technology has significantly transformed the development of solid 

oral dosage forms, offering enhanced flexibility and customization in drug release profiles. 

Notable advancements in 3DP techniques, particularly extrusion-based methods, have enabled 

the creation of diverse oral drug delivery systems. These include immediate-release, delayed-

release, polypills for complex regimens, gastro-retentive systems, and fast-dissolving films. By 

adjusting parameters such as layer thickness and filament composition, researchers have 

successfully tailored drug release profiles and developed sophisticated drug delivery devices. 

For example, studies have demonstrated the successful fabrication of bilayer tablets with 

distinct release characteristics for anti-diabetic medications. Additionally, polypills with 

customized immediate and sustained release profiles have been developed. These innovations 

illustrate the potential of 3DP to overcome limitations associated with traditional manufacturing 

methods, offering personalized medication solutions through tailored drug release profiles and 

novel dosage forms (Katstra et al., 2000; Lee et al., 2003; Wang et al., 2003; Alhijjaj et al., 

2016; Bácskay et al., 2022; Thuan et al., 2024). Several key studies have further advanced the 

field (Table 1). 
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Table 1. 3D printing technology in manufacture of tablets  

Year Type of 3D printing Type of polymer Type of API Reference 

2000 Droplet binding Methacrylate copolymers Chlorpheniramine Katstra et al., 

2000  

Droplet binding Methacrylate copolymers Chlorpheniramine 

and diclofenac 

Rowe et al., 

2000 

2003 Droplet binding 

(TheriForm™ process) 

None (mannitol) Captopril Lee et al., 

2003 

Droplet binding 

(TheriForm™ process) 

Kollidon SR (80% 

polyvinyl acetate, 19%) 

Pseudoephedrine Wang et al., 

2003 

2007 Bio-ceramic powder 

printing
 

Resomer RG502H 

(polylactide- polyglycolide 

50:50) 

Vancomycin, 

ofloxacin, and 

tetracycline 

Gbureck et al., 

2007 

2009 Powder binding 

desktop 3D machine 

PVP Acetaminophen Yu et al., 2009 

Powder binding 

desktop 3D machine 

PVP K30 Acetaminophen Yu et al., 2009 

2015 Extrusion-based 3D 

printer (Fab@Home)
 

PAA Guaifenesin Khaled et al., 

2015 

2015 FDM PVA Budesonide, 

paracetamol and 

caffeine 

Goyanes et al., 

2015 

RegenHU 3D printer HPMC Nifedipine, 

captopril, and 

glipizide 

Khaled et al., 

2015 

2016 FDM Eudragit EPO, Soluplus 

and PVA 

Felodipine Alhijjaj et al., 

2016 

FDM Eudragit EPO Theophylline, 5-

ASA, captopril, 

and prednisolone 

Sadia et al., 

2016 

SLA PEGDA 4-ASA and 

paracetamol 

Wang et al., 

2016 

FDM PVA Fluorescein Goyanes et al., 

2016 

2017 Inkjet printing PEG Ropinirole Acosta-Vélez 

et al., 2017 

FDM PCL and Eudragit RL 100 Nanocapsules Beck et al., 

2017 

FDM PLA Acetaminophen Zang et al., 

2017 

2018 Inkjet printing with 

piezoelectric nozzle 

PEG and PEGDA Naproxen Acosta-Vélez 

et al., 2018 

UV-assisted 

crosslinking 

technology 

PDMS Prednisolone Holländer et 

al., 2018 

Extrusion-based 

MAMII 

HPMC K4M, HPMC E15, 

MCC PH101, and PVP 

Dipyridamole Li et al., 2018 

2019 Zipdose Unknown Levetiracetam Bhattacharya 

et al., 2019 

2020 Semi-solid 3D 

extrusion printer 

HPCM Levetiracetam Cui et al., 

2020 

Desktop 3D printer PCL and PEO Yellow and blue 

dye 

Huang et al., 

2020 
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2021 Pressure-assisted 

microsyringe 

PEG 400 and PEG 6000 Dapagliflozin Mohammed et 

al., 2021 

FDM PCL Indomethacin and 

Theophylline 

Viidik et al., 

2021 

SLS PVA Indomethacin, 

Nifedipine, 

Tinidazole, 

Ibuprofen, and 

Metoprolol 

Yang et al., 

2021 

2022 SLS PEGDA Warfarin sodium Xu et al., 2022 

 

Gbureck et al. (2007) utilized a unique 3D bio-ceramic powder printing process to 

manufacture drug delivery systems, subsequently adsorbing antibiotics over a week to create 

functional tablets. Yu et al., 2009 initially produced an acetaminophen-containing matrix tablet 

using a desktop 3D printer and later modified the design by orienting layers vertically to achieve 

a different dissolution mechanism. RegenHU's extrusion-based 3D printer was employed to 

create a polypill with distinct, fillable link cartridges for semi-solid API-containing materials, 

using inks manufactured from nifedipine, captopril, and glipizide combined with 

hydroxypropyl methylcellulose (HPMC). Beck et al. (2017) integrated AM with 

nanotechnology, exploring the potential of this combined approach to enhance drug delivery. 

Chai et al. (2017) designed an intragastric floating tablet by hot-melt extruding domperidone 

with hydroxypropyl cellulose (HPC) and then 3DP the filament using FDM. This method 

allowed for slow dissociation of HPC polymer chains, creating a rigid shell that supports 

sustained drug release. These advancements underscore the transformative impact of 3DP on 

pharmaceutical formulations, offering innovative solutions for personalized medication and 

enhanced drug delivery systems. 
 

5.2.  Capsules 

 

 In 2015, Melocchi group introduced the first 3D-printed capsular devices (Melocchi et 

al., 2015) (Table 2). This pioneering work utilized HPC-containing filaments produced through 

hot-melt extrusion, which were then employed in 3DP to create swellable, erodible capsules 

designed for oral pulsatile drug release (Melocchi et al., 2015). The fabrication process involved 

the use of inkjet printing and FDM to construct capsules. The final capsules consisted of three 

parts: two hollow sections with a rounded open end and a cylindrical closed end, and a middle 

section that functioned as a joint and partition (Figure 6). These capsules, varying in wall 

thickness and geometry, were filled with APIs, and the findings demonstrated successful 

pulsatile release of the APIs within 2 h (Maroni et al., 2017; Kolli et al., 2018). 

 

 
Figure 6. Cross-section of the designed capsules 
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 Further research explored the combination of 3DP technology with the controlled release 

properties of nanocellulose hydrogels. This approach allowed for precise modulation of drug 

release by adjusting the inner geometry of the PLA capsules (Table 2). Notably, this method 

enabled the use of a wide range of APIs, including sensitive substances such as proteins and 

liposomes, as the API did not undergo heating during the manufacturing process (Phan et al., 

2022; Thuan et al., 2022a). The advantages of 3D-printed capsular devices mirror those 

observed in personalized tablet formulations, including the ability to produce flexible, on-

demand doses tailored to individual patient needs, which can lead to improved health outcomes. 

However, limitations have been noted, such as concerns regarding API stability and the limited 

availability of polymeric carriers. Despite these challenges, the integration of 3DP with 

advanced materials like nanocellulose hydrogels represents a significant advancement in the 

improvement of customizable drug delivery systems (Desu et al., 2021; Tatipamula and Ketha, 

2020; Thuan et al., 2022b). 

 
Table 2. 3D printing technology in manufacture of capsules 

Year Type  Type of polymer Type of API Reference 

2015 FDM HPC No (yellow and 

blue dye) 

Melocchi et al., 2015 

2016 FDM PLA, EC, HPC, HPMC, HPMCAS, 

various Eugradit, PEO, PVA, 

Soluplus, PEG 400 and 8000 

Acetaminophen 

and furosemide 

Melocchi et al., 2016 

2017 FDM and 

Inkjet 

PLA, PVA, polymer formulations No (yellow and 

blue dye) 

Maroni et al., 2017 

2020 FDM PLA Metoprolol and 

nadalolol 

Auvinen et al., 2020 

 

5.3.  Oro-dispersible film 

 

 The advancement of 3DP technology has led to the creation of innovative oral dosage 

forms, including the development of 3D-printed oral films. One of the earliest examples of this 

technology was demonstrated using thermal inkjet (TIJ) printing, where salbutamol sulfate was 

dissolved in an aqueous solution (Arora and Chakraborty, 2017; Paidi et al., 2017). This 

solution was loaded into ink cartridges and printed onto a starch film, resulting in the production 

of oro-dispersible films (ODFs) (Figure 7). Similarly, various substrates, such as water-

impermeable transparency films, were used to incorporate rasagiline mesylate (RM) as a low-

dose API. By applying several layers of the printed solution on top of each other using a 

standard consumer TIJ printer, flexible doses of the API were achieved (Arora and Chakraborty, 

2017; Paidi et al., 2017a; Salawi, 2022; Thuan et al., 2022c; Killari et al., 2023).  

 

 
Figure 7. 3D printing in oro-dispersible films 
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Further advancements in 3DP techniques have incorporated multiple methods to enhance 

drug delivery systems (Genina et al., 2013; Killari et al., 2023a). For instance, Vakili et al., 

2016 employed inkjet printing technology to produce ODFs containing propranolol 

hydrochloride. They designed these films with accelerating doses of the API across varied area 

sizes and three different substrates using TIJ printing (Vakili et al., 2016). Jamróz et al., 2017 

utilized FDM technology to fabricate ODFs containing aripiprazole, employing PVA as the 

polymer matrix. The two-step hot-melt extrusion process resulted in the complete 

amorphization of aripiprazole, with the high strength of PVA helping to preserve this 

amorphous state (Jamróz et al., 2017). In another study, researchers explored semi-solid 

extrusion 3DP for the production of warfarin-containing ODFs. This approach aimed to 

overcome limitations associated with conventional manufacturing processes, making these 

oromucosal films particularly valuable for delivering potent APIs in treatments for 

cardiovascular disorders, schizophrenia, and migraines (Kean and Adeleke, 2023). For a 

comprehensive overview of the research on fabricated ODFs, please refer to below Table 3. 

 
Table 3. 3D Printing technology in manufacture oro-dispersible films. 

Year Type of 3D printing Type of polymer Type of API Reference 

2011 Thermal inkjet printing No need Salbutamol  

Sulphate 

Buanz et al., 

2011 

2012 Inkjet and flexographic 

printing 

EC Riboflavin and 

propranolol 

Genina et al., 

2012 

2013 Thermal inkjet printing Crospovidone (Kollidon 

CL-M) 

Rasagiline 

mesylate 

Genina et al., 

2013 

2017 FDM PVA Aripiprazole Jamróz et al., 

2017 

2018 FDM PVA, PEO, and PEG Ibuprofen and 

paracetamol 

Ehtezazi et al., 

2018 

2019 Semi-solid extrusion Hydroxypropyl-β-

cyclodextrin and cellulose 

Carbamazepine Conceição et 

al., 2019 

2021 Multitool 3D printer HPMC Indomethacin Germini and 

Peltonen, 2021 

 

5.4.  Intrauterine drug delivery system 

 

3DP technologies have significantly advanced the development of drug delivery devices 

and implants, particularly for intrauterine and vaginal applications. These methods offer the 

flexibility to customize shape and size, enhancing both systemic and local delivery of APIs 

through these routes (Urbán-Morlán et al., 2021; Bao et al., 2019; Klein and Tietz, 2019; Killari 

et al., 2021). Holländer et al., 2016 pioneered the use of FDM for creating T-shaped intrauterine 

devices (IUDs). Their study demonstrated that 3D-printed devices made from PCL exhibited 

faster drug release of the model drug indomethacin compared to the drug-loaded extruded 

filament. The enhanced drug release was attributed to the drug polymer diffusion state in the 

3D-printed devices, which facilitated a more efficient release profile compared to its crystalline 

form in the filament. Further advancing this field, the same research group utilized ethylene 

vinyl acetate (EVA) as a polymer for fabricating intrauterine systems (IUS) and subcutaneous 

rods (SR) using FDM-based 3DP. These custom-made T-shaped devices demonstrated a rapid 

drug release profile over a 30-day period, highlighting EVA as a suitable polymer for producing 

implantable devices through 3D extrusion techniques (Holländer et al., 2016).  

In another notable development, Fu et al., 2018 applied FDM-based 3DP to create 

customized vaginal rings containing progesterone. They used poly(lactic acid) (PLA) and PCL 

for filament formation through HME. Various ring shapes, including O, Y, and M 
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configurations, were designed. The O-shaped ring, in particular, exhibited superior drug release 

characteristics due to its specific geometrical design. This approach underscores the potential 

of 3DP to produce tailored contraceptive devices with customizable shapes and sizes, 

optimizing drug delivery for individual needs. These advancements illustrate the transformative 

impact of 3DP on the design and production of drug delivery systems, offering personalized 

solutions that enhance therapeutic efficacy and patient compliance (Fu et al., 2018). 

 

6.  3D TECHNOLOGY OF FORMULATION BASED ON NOVEL DRUGS 

 

6.1.  3D Printing technology in nanomedicine 

 

Personalized medicine aims to tailor drug treatments, drug combinations, dosing intervals, 

and drug release rates to meet the needs of individual patient, moving beyond the traditional 

‘one-size-fits-all’ approach. In this context, nanotechnology has emerged as a transformative 

force, significantly advancing the development of novel drug delivery systems (Pyteraf et al., 

2022; Zhu et al., 2018). By modifying the biopharmaceutical properties of poorly absorbable 

drugs, nanotechnology holds substantial promise for enhancing therapeutic efficacy and 

individualizing treatment strategies. Recent years have witnessed a surge in interest towards 

integrating nanotechnology with 3DP to develop multi-functional drug delivery systems, 

particularly solid dosage forms incorporating nano-pharmaceuticals. Nano-capsules, known for 

their physical stability over several months, often face challenges such as susceptibility to 

microbial contamination due to their high-water content. To address these issues, traditional 

methods such as spray-drying, freeze-drying, and wet granulation have been employed to 

enhance the stability, storage, and transportation of nano-capsules (Jain et al., 2021; de Oliveira 

et al., 2022; Sommonte et al., 2023). One significant advancement involves the conversion of 

liquid Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) into solid SNEDDS (Kazi et 

al., 2019). This transition improves the physical stability of the formulation and enhances 

patient compliance. The integration of 3DP technology into this field has opened new avenues 

for designing nanomedicine-based solid dosage forms, providing enhanced control over drug 

delivery characteristics and allowing for the production of complex and customized drug 

delivery systems. In the following sections, we will delve into the comprehensive development 

of nanomedicine-based solid dosage forms utilizing 3DP techniques, highlighting how this 

innovative approach addresses traditional challenges and paves the way for more effective and 

personalized drug delivery solutions (Kazi et al., 2019; Rehman et al., 2017; Hauptstein et al., 

2015). 

 

6.2.  3D Printed tablets loaded with polymeric nanocapsules 

 

The application of FDM-based 3DP has marked a significant progress in the 

pharmaceutical field by enabling the transformation of polymeric nanocapsule suspensions into 

customized tablet dosage forms (Beck et al., 2017) (Figure 8). This approach is particularly 

notable for developing personalized drug delivery systems for medications like deflazacort. 

3DP, a technique where products are constructed layer-by-layer from a digital model, has 

garnered increasing interest in the pharmaceutical industry since the FDA's approval of the first 

3D-printed drug, Spritam (Serrano et al., 2023; Mohammed et al., 2021). This technology is not 

only revolutionizing drug discovery but is also being utilized for manufacturing drug delivery 

devices and biomanufacturing applications, such as bone and tissue engineering via scaffolds 

(Serrano et al., 2023; Shabbirahmed et al., 2023). The flexibility of 3DP allows for the 

production of products with a wide range of configurations, achieved through various processes 
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including SLS, SLA, FDM, SLS with Selective Extrusion (SSE), and powder bed-inkjet 

printing (Gioumouxouzis et al., 2020; Pradeep and Paul, 2022; Charoo et al., 2020).  

A pioneering study by Beck et al. showcased the integration of 3DP and nanotechnology 

for the first time, producing tablet dosage forms containing polymeric nanocapsules tailored for 

personalized medicine (Beck et al., 2017). In this study, 3D-printed tablets (referred to as 

printlets) were manufactured using Eudragit RL100 filaments and mannitol. These printlets 

were subsequently drug-loaded by immersing them in a suspension of nanoparticles. The 

process demonstrated that drug loading was proportional to the volume of the nanocapsule 

suspension absorbed by the 3D-printed devices during the soaking process. By considering 

factors such as drug content, volume absorbed, and the final mass of the tablet, the study 

successfully converted nanocapsule fluids into solid dosage forms. This innovation represents 

a significant leap forward in 3DP technology, providing a novel and efficient method for 

developing personalized drug delivery systems based on nanomedicine. This approach not only 

facilitates the creation of customized drug delivery solutions but also highlights the potential of 

integrating advanced manufacturing technologies with nanotechnology to enhance the 

effectiveness and personalization of pharmaceutical treatments (Beck et al., 2017). 

 

 
 

Figure 8. 3D printed tablet dosage forms loaded with polymeric nanocapsules 

 

6.3.  3D Printing of self-nanoemulsifying tablets 

 

Recent advancements in lipid-based formulation techniques (Table 4), particularly 

SNEDDS, have garnered significant attention for improving the oral bioavailability of poorly 

water-soluble compounds (Shetty et al., 2014; Kari et al., 2019). These formulations facilitate 

drug solubilization and enhance absorption by forming stable nanoemulsions upon oral 

administration. SNEDDS are designed to create self-emulsifying systems that disperse in 

aqueous media, resulting in nano-sized oil droplets that encapsulate poorly soluble drugs (Kari 

et al., 2019; Rehman et al., 2017). This nanoemulsion system significantly improves the 

solubility and bioavailability of the encapsulated drugs, as the small droplet size promotes better 

dissolution and absorption in the gastrointestinal tract. Traditionally, SNEDDS have been 

incorporated into soft gel capsules, which serve as an effective means for oral delivery. While 

this approach has proven beneficial for enhancing drug solubility and bioavailability, liquid-

based nanoemulsion formulations face certain limitations, particularly concerning stability 

(Rehman et al., 2017). The stability of these formulations can be a significant challenge, often 

leading to issues such as phase separation or changes in droplet size over time, which can impact 

the efficacy and safety of the drug product. Addressing these stability concerns remains a 

critical focus in the development of lipid-based formulations to ensure the long-term efficacy 
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and reliability of SNEDDS in enhancing the bioavailability of poorly soluble drugs (Kari et al., 

2019; Rehman et al., 2017). 

 
Table 4. 3D printing technology based on self-nanoemulsiondrug delivery systems 

Year Drug delivery 

type 

Type of 3D printing Type of 

polymer 

Type of 

API 

References 

2011 Nanosuspension Inkjet-based micro dosing 

dispenser head 

None Folic acid Pardeike et 

al., 2011 

2011 Micron-sized dried 

deposits 

Inkjet printing PVP Felodipine Scoutaris 

et al., 2011 

2012 Micropatterns Inkjet printing PLGA Rifampicin Gu et al., 

2012 

2012 Microparticles Piezoelectric inkjet printing PLGA Paclitaxel Lee et al., 

2012 

 

6.4.  Transdermal drug delivery 

 

 The integration of 3DP technology into transdermal drug delivery systems represents a 

significant advancement in creating personalized and effective pharmaceutical products. This 

technology allows for the fabrication of complex and customized geometries that cater to 

specific patient needs, enhancing both local and systemic delivery of APIs (Prausnitz and 

Langer, 2008; Rastogi and Yadav, 2012). Here’s a detailed look at the innovative approaches 

and applications of 3DP in transdermal drug delivery (Table 5).  

 
Table 5. 3D printing technology in transdermal drug delivery system 

Year Type of 3D printing Type of polymer Type of API References 

2016 FDM and SLA Flex EcoPLA and 

PCL 

Salicylic acid Goyanes et 

al., 2016 

2016 Inhouse extrusion-based 3D printer 

– multi-head deposition system 

PLA and PCL 5-Fluorouracil Yi et al., 

2016 

2017 EHD PCL and 

PCL/PVP 

Tetracycline 

hydrochloride 

Wang et al., 

2017 

2021 FDM PVP Quercetin Chaudhari et 

al., 2021 

 

3DP technology has demonstrated its versatility in advancing drug delivery systems 

through the development of implants, micro-needles, and masks tailored to specific therapeutic 

needs. Kempin et al., 2017 utilized extrusion-based FDM combined with hot-melt extrusion to 

create drug-loaded implants using polymers like PCL, Eudragit®RS, and ethyl cellulose. These 

hollow cylindrical implants provided tailored drug release, with PCL enabling the fastest 

release, facilitating extended and customized delivery (Kempin et al., 2017). Similarly, Allen 

et al., (2016) employed piezoelectric inkjet printing to fabricate dissolvable micro-needles for 

vaccines, such as the seasonal influenza vaccine. This approach improved compliance and 

efficacy by ensuring precise dosage and minimal waste during percutaneous administration. In 

dermatological applications, Goyanes et al. (2016a) created a custom nose mask for acne 

treatment using FDM technology, leveraging materials like Flex EcoPLA™ and PLC to enable 

controlled drug release and enhanced therapeutic effects. Muwaffak et al. (2017) further 

developed patient-specific wound dressing masks for the nose and ears incorporating 

antimicrobial agents such as zinc, silver, and copper. These masks provided superior fit, 

improved adherence, and localized antimicrobial treatment, outperforming traditional flat 
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dressings (Muwaffak et al., 2017). These innovations underscore 3DP's potential to enhance the 

precision, efficacy, and adaptability of medical treatments. 

3DP technologies like FDM and inkjet printing, have significantly advanced transdermal 

drug delivery systems by offering innovative solutions. These technologies enable the creation 

of custom geometries, such as implants, micro-needles, and masks, designed to match patient-

specific anatomical features. Additionally, they facilitate precise and controlled drug release 

profiles, ensuring that APIs are delivered in alignment with therapeutic needs. Furthermore, 

3DP enhances patient compliance by providing targeted and efficient drug delivery systems, 

ultimately leading to improved treatment outcomes (Economidou et al., 2018). The continued 

evolution of 3DP technology holds promise for further innovations in personalized medicine, 

potentially transforming the landscape of transdermal drug delivery.  

 

6.5.  Microneedles 

 

 Recent studies underscore the transformative potential of 3DP technologies (Table 6), 

such as femtosecond laser two-photon polymerization and micro-SLA, in the fabrication of 

microneedles loaded with a range of pharmacologic agents, including amphotericin B, 

miconazole, dacarbazine, and insulin (Chu et al., 2018; Ge et al., 2020). These advancements 

highlight the versatility of 3DP in pharmaceutical applications. The use of specialized 

polymers, like Gantrez® AN 169 BF, has facilitated the development of microneedles designed 

for the transdermal treatment of cutaneous fungal infections, emphasizing the importance of 

material selection in tailoring drug delivery systems for specific therapeutic requirements (Ge 

et al., 2020). Moreover, the ability of 3DP to create dual-function microneedle arrays on 

personalized curved surfaces - combining drug delivery with splinting, offers a novel approach 

for personalized treatment (Figure 9). For instance, a microneedle splint for trigger finger 

treatment exemplifies how 3DP can enhance functionality without compromising hand 

mobility. The integration of pharmacologic agents with complex solubility profiles into 

microneedles through 3DP ensures precise dosing and maintains mechanical strength, 

presenting advantages over traditional metal microneedles. This technology also enables 

potential cell-targeted delivery due to the fine nano-scale tips. Overall, 3DP in microneedle 

fabrication shows significant promise for addressing diverse therapeutic needs, including 

localized drug delivery for skin cancer and transdermal fungal infections (Chu et al., 2018; Ge 

et al., 2020; Nugyen et al., 2020). 

 

 
 

Figure 9. 3D printing of preparation of microneedles 
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Table 6. 3D printing technology of microneedles 

Year Type of 3D printing Type of polymer Type of API References 

2007 Femtosecond laser two 

photon polymerization 

Ormocer® None Ovsianikov et al., 

2007 

2013 Piezoelectric inkjet 

printing 

PDMS and PMMA Amphotericin B Boehm et al., 

2013 

2014 Piezoelectric inkjet 

printing 

Gantrez® AN 169 BF 

(poly(methylvinylether- 

co-maleic anhydride)) 

Miconazole Boehm et al., 

2014 

2015 Multi-material 

microstereolithography 

(µSL) 

Poly(propylene 

fumarate) 

Dacarbazine Lu et al., 2015 

2015 Inkjet printing Soluplus® 5-Fluorouracil Uddin et al., 2015 

2017 DLP 3DMCastable resin Diclofenac sodium Lim et al., 2017 

2018 SLA Medium viscosity 

alginate 

Blue dye, HepG2 

cell encapsulation 

Farias et al., 2018 

2018 FDM PLA Fluorescein Luzuriaga et al., 

2018 

2018 Inkjet printer Dental SG Insulin Pere et al., 2018 

2019 SLA Dental SG Insulin Economidou et 

al., 2019 

 

6.6.  Implants 

 

 The intersection of healthcare and 3DP technology has ushered in transformative 

advancements in the fabrication of medical implants. Leveraging the principles of AM, 3DP 

has revolutionized implant design and production, providing unparalleled customization, 

precision, and patient-specific solutions. This technology enables the creation of implants with 

intricate and complex geometries, which is especially beneficial for devices that must integrate 

seamlessly with specific anatomical structures. Additionally, 3DP facilitates rapid prototyping, 

allowing for accelerated development processes and timely adjustments based on individual 

patient needs. From dental implants to orthopedic devices, 3DP offers tailored solutions for a 

wide range of medical requirements (Nagarajan et al., 2018; Tian et al., 2021). A summary of 

recent innovations in 3D-printed drug delivery implants highlights their diverse applications 

and capabilities. For instance, Levofloxacin-containing PLA implants with complex release 

profiles were designed using inkjet printing, achieving a steady-state drug release over 100 

days. Multi-layered concentric cylindrical implants containing rifampicin and isoniazid 

demonstrated controlled drug liberation, with peak concentrations occurring between 8 and 12 

days. Tailored drug delivery platforms containing dexamethasone, fabricated via extrusion 

printing, exhibited continuous API release for over 4 months, making them suitable for long-

term implantation (Wu et al., 2009; Hatami et al., 2024).  

 IUDs and SR loaded with indomethacin, created from EVA copolymer using FDM 

printing, provided a long-acting, 3D-printed implantable system. Implantable meshes for hernia 

repair, loaded with ciprofloxacin, showed improved wound healing and maintained body 

temperature stability in animal studies. Moreover, 3DP has been applied to fabricate implants 

for localized drug delivery, including gentamicin and methotrexate-loaded devices such as 

screws, pins, and bone plates. PLLA samples, printed and immersed in various anticancer drugs, 

demonstrated effective local chemotherapy, multidrug delivery, and sustained drug release for 

osteosarcoma treatment. Additionally, 3D-printed ciprofloxacin-containing PLA implants were 

found to be more effective for treating bone infections compared to conventional methods. 

Collectively, these studies underscore the immense potential of 3DP in creating personalized, 
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complex drug release implants tailored to individual patient needs (Abdelgader et al., 2024; 

Fanse et al., 2022). 

 Applications of 3D-printed implants is revolutionizing medical implant fabrication by 

enabling the production of highly customized solutions across various medical fields. In 

orthopedics, 3DP allows for the creation of tailored implants, such as hip and knee 

replacements, ensuring a precise fit, reducing complications, and improving patient outcomes. 

In dentistry, the technology is employed to fabricate dental implants and prosthetics with 

exceptional accuracy, ensuring both functionality and aesthetic appeal. For cranial implants, 

3DP provides precise matching to the skull's contours, catering to patients recovering from 

trauma or surgical interventions. Additionally, the versatility of 3DP extends to cardiac 

applications, enabling the creation of patient-specific stents and heart valve replacements, 

highlighting its transformative potential in personalized medicine (Ho et al., 2015; Wong, 2016; 

Daikuara et al., 2022). 

 

7.  CONTRIBUTIONS OF 3D PRINTING TECHNOLOGY 

 

 Maintaining healthy skin is essential for overall well-being, particularly in the context of 

burns, non-healing cuts, accidents, and severe wounds, which require prompt and effective skin 

therapy. Traditionally, skin injuries have been treated with transplants sourced from either 

donors or the patient's own body. However, 3D bioprinting represents a revolutionary 

advancement in generating skin transplants quickly and affordably. This cutting-edge 

technology facilitates the creation of functional tissue that performs essential biological 

functions, enabling significant innovations in both therapy and surgery. Researchers are 

continually developing viable skin tissues through 3D bioprinting, which can significantly aid 

in the recovery of individuals with severe skin conditions and burn injuries, thus streamlining 

the skin grafting process (Olejnik et al., 2021; Cubo et al., 2016). Steps involved in 3D 

bioprinting of skin were illustrated in Figure 10.  

 

 
 

Figure 10. Steps involved during the printing of skin using 3D bioprinting 

 

Applications of 3D bioprinting in skin therapy are revolutionizing skin regeneration and 

reconstruction by offering advanced solutions for various medical applications. It enables the 

rapid production of functional skin that closely resembles human skin, with a natural layered 

structure suitable for transplantation, providing a reliable and long-term solution for patients 

(Kérourédan et al., 2018). The technology also facilitates the printing of skin grafts, 

incorporating blood vessels to mimic natural living skin and allowing for biological scaffolds 

tailored to the specific shape and size of patients (Ghidini, 2018; Biedermann et al., 2013). For 

burn injury treatment, tissue-engineered skin created through 3D bioprinting serves as an 
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effective substitute, supporting wound closure and improving burn patients' quality of life (Ma 

et al., 2018; Zhang et al., 2019). Additionally, 3D bioprinting provides innovative solutions for 

nose wing reconstruction by enabling the fabrication of full-thickness skin grafts customized 

for individual needs and offering controlled tissue analogue creation (Khoo et al., 2018; 

Tatipamula et al., 2020). In summary, 3D bioprinting represents a transformative approach in 

skin therapy, offering rapid, customizable solutions for a range of medical needs. Its ability to 

create patient-specific, functional skin tissue opens new avenues for effective treatment and 

improved patient outcomes. 

 

8.  APPLICATION OF 3D PRINTING TECHNOLOGY 

 

 3DP technology is transforming healthcare by revolutionizing drug delivery systems and 

enabling personalized medicine. It facilitates the development of tailored drug delivery systems 

with customized release profiles, improving therapeutic precision and efficacy (Goyanes et al., 

2014; Goyanes et al., 2019). By considering factors such as patient weight, age, and specific 

health conditions, 3DP enables the fabrication of personalized medications that enhance 

treatment outcomes and adherence (Norman et al., 2017; Trenfield et al., 2018; Bharadwaj, 

2019). The technology also allows for the production of intricate printed dosage forms and 

complex drug formulations, offering innovative solutions for drug delivery. Additionally, 3DP 

is instrumental in manufacturing customized medical devices, such as implants and transdermal 

drug delivery tools, tailored to therapeutic requirements (Goyanes et al., 2014; Bharadwaj et al., 

2018; Trenfield et al., 2018). Its rapid prototyping capabilities streamline pharmaceutical 

development by accelerating the testing and optimization of formulations. For orphan drug 

production, 3DP provides a cost-effective approach to manufacturing rare medications in small 

quantities. Taste-masked formulations produced via 3DP improve palatability and patient 

compliance, especially for pediatric and geriatric populations (Chitturi et al., 2016; Trenfield et 

al., 2018; Trenfield et al., 2019). Lastly, 3DP enables patient-specific medication, ensuring that 

treatments are personalized to unique medical needs, further enhancing therapeutic outcomes 

(Goyanes et al., 2014; Norman et al., 2017). Overall, 3DP is revolutionizing healthcare by 

advancing drug delivery, personalization, and patient care across diverse applications. 

 

9.  OPPORTUNITIES AND CHALLENGES FOR IMPLEMENTING 3D PRINTING 

IN MEDICINE 

 

3DP represents a transformative advancement in personalized medicine by enabling the 

production of small batches with customized doses and release profiles. This technology 

overcomes the limitations of traditional mass production methods, allowing for the creation of 

drug formulations tailored to individual patient needs. The FDA approval of Spritam by Aprecia 

in 2015 and Triastek's recent FDA clearance for a 3D-printed dosage form for rheumatoid 

arthritis mark significant milestones in integrating 3DP into mainstream medical practice, 

underscoring its growing acceptance and potential for wider application. Additionally, 3DP 

offers a unique advantage in the production of orphan drugs, facilitating the creation of small 

batches for rare diseases and thereby addressing the challenge of medication shortages. This 

approach contrasts sharply with conventional industrial methods, providing a promising 

solution for the delivery of specialized therapies (Liaw and Guvendiren, 2017; Nguyen et al., 

2021b; Nguyen et al., 2021c).  

The widespread implementation of 3DP in medicine faces several significant challenges, 

primarily stemming from the lack of comprehensive regulatory guidelines. Without established 

standards and protocols, integrating 3DP technology into healthcare systems is fraught with 

difficulties. Regulatory bodies such as the FDA’s Emerging Technology Team, the Centre for 
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Drug Evaluation and Research, and Health Canada are actively addressing these challenges by 

focusing on 3DP in pharmaceutical research (Shahrubudin et al., 2020; Tatipamula et al., 

2021a). Their ongoing efforts are essential for developing frameworks that can facilitate the 

technology's integration into clinical practice. A major concern in the field is ensuring the 

quality and stability of 3D-printed drugs. To tackle this, non-destructive evaluation methods 

such as near-infrared and Raman spectroscopy have been proposed for real-time assessment of 

drug product quality during production. These techniques aim to address concerns related to 

the consistency and reliability of 3D-printed medications. Furthermore, while various 3D 

printers have been explored for pharmaceutical dosage forms, none of the current models fully 

comply with Good Manufacturing Practice standards. Achieving Good Manufacturing Practice 

compliance is important for safeguarding the consistent safety, quality, and efficacy of 3D-

printed medical products. In summary, although 3DP has substantial potential to revolutionize 

drug formulation and delivery, overcoming regulatory, quality, and compliance challenges is 

essential for its successful integration into the healthcare system (Palo et al., 2017; Lim et al., 

2018; Quanjin et al., 2020; Shahrubudin et al., 2020). 

 

10.  CONCLUSIONS AND FUTURE PERSPECTIVE 

 

3DP is emerging as a transformative technology in the pharmaceutical industry, 

promising groundbreaking advancements in drug manufacturing and delivery systems. By 

bringing production closer to patients and enabling customized therapies, 3DP offers a novel 

approach that enhances treatment efficacy through tailored drug formulations. The continual 

advancements in technology and research hold the potential to revolutionize drug delivery 

systems, making them safer, more effective, and adaptable to individual needs. The capability 

of 3DP to create innovative drug delivery systems, with varying release rates and personalized 

dosing, underscores its impact on the future of medicine. Over the past decade, significant 

research efforts have focused on optimizing printers and processes to produce unique dosage 

forms, setting the stage for personalized medicine. The technology's versatility allows for the 

administration of a wide range of medications with different release profiles, offering 

unparalleled flexibility in drug design. As the pharmaceutical industry continues to explore new 

formulations and delivery methods, 3DP is increasingly recognized for its potential to manage 

medication release rates and create novel drug delivery solutions. The technology's ability to 

rapidly prototype various dosage forms, including mucoadhesive films and layered structures, 

highlights its promise for advancing medicinal administration systems. In summary, 3DP holds 

great promise for transforming drug manufacturing and delivery, positioning itself as a pivotal 

technology with the potential to shape the future of the pharmaceutical industry. 

3DP stands at the forefront of revolutionizing drug delivery systems, offering 

unprecedented capabilities for creating personalized medications. This modern technique not 

only enhances cost-effectiveness and simplifies production but also enables the development 

of complex formulations with precise control over release profiles and designs. The high 

flexibility of 3DP allows for the production of a wide variety of drug products, tailored to meet 

specific patient needs. This adaptability is crucial for advancing personalized medicine and 

addressing individual therapeutic requirements with greater accuracy and efficacy. Despite 

these advancements, regulatory challenges remain a significant hurdle. Although the FDA 

approved Spritam in 2015, which utilized ZipDose technology similar to traditional powder 

compaction, there is still a lack of comprehensive guidelines for the regulation of 3D-printed 

pharmaceutical dosage forms. This regulatory uncertainty poses challenges for researchers and 

manufacturers as they navigate the complexities of bringing 3D-printed drugs to market. 

Another promising area is bioprinting, which involves printing living cells, tissues, or organs. 

Early exploratory studies in bioprinting have demonstrated significant potential for 
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pharmaceutical applications, offering new avenues for tissue engineering and regenerative 

medicine. As 3DP technology continues to evolve, it holds the promise of further transforming 

drug delivery systems and medical treatments, paving the way for innovations that could 

enhance patient care and expand therapeutic possibilities. 
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