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ABSTRACT 

 

This paper examines the use of functional relations as a comprehensive analytical instrument 

for resolving and streamlining differential equations across many categories, including linear, 

nonlinear, stochastic, delayed, and hybrid systems. The objective is to augment model 

interpretability, diminish dimensionality, and optimise computational efficiency in intricate 

systems. The methodology incorporates symmetric Lie analysis, stochastic calculus, operator 

theory, and symbolic computation. Functional relationships were established using 

infinitesimal symmetries, Lyapunov functionals, and moment-based analysis. Numerical and 

symbolic experiments were conducted utilising Maple, Mathematica, and MATLAB. 

Functional relations lowered model dimensionality by as much as 40% and enhanced prediction 

accuracy. For the Korteweg de Vries (KdV) equation, scale-invariant relationships accurately 

represented soliton dynamics with an error margin of less than 1.8%. In stochastic systems, 

functional connections among moments reduced prediction errors by 12%. In hybrid systems, 

piecewise invariants reduced oscillation amplitudes by 25%. Inverse problems demonstrated a 

13% improvement in parameter reconstruction accuracy and an 18% reduction in calculation 

time. Functional relations provide a strong foundation for analysing differential equations, 

especially in systems marked by nonlinearity, uncertainty, or structural complexity. The results 

endorse the incorporation of functional relationships into control systems, digital twins, and 

hybrid models. Their formalisation and adaptive implementation create new opportunities for 

interpretable, resource-efficient modelling in applied sciences and engineering. 

 

Keywords: symmetric Lie analysis, transformations, stochastic systems, Monte Carlo methods, 

Fokker-Planck equations 

 

 

1. INTRODUCTION 

 

Differential equations remain the main tool for mathematical modelling of natural, 

technical and social systems. From quantum mechanics to economic forecasts, their role as a 

language for describing dynamic processes is indisputable. Nevertheless, the increasing 

complexity of modern problems related to nonlinearity, multidimensional and stochastic factors 

require the development of new analytical approaches. Traditional methods such as multiplier 

integration or Laplace transforms are often insufficient for analysing systems with complex 
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boundary conditions or non-local interactions (Logan, 2015). The functional relation becomes 

the key one, offering an alternative mechanism for determining hidden structures of equations 

(Divak et al., 2022). The relevance of the research is the need to systematise and expand the 

use of functional relationships that allow us to link solutions to various equations or components 

of one system through generalised algebraic or operational dependencies. The modern 

development of applied sciences, including biophysics and quantum chemistry, poses new 

problems in the analysis of differential equations, where classical methods often do not consider 

multivariable or non-calculus (Mashuri et al., 2024). Functional relationships become the key 

to reducing the measurement of the problem without losing information about dynamics, 

especially limited computational bandwidth, where direct numerical methods require excessive 

resources (Olver, 1993). Recent research in the field of fractal systems and neuromorphic 

computing confirms that structural relationships between variables can be used to build 

effective approximation models (Dzurina, 2025). 

The study shows that neural networks can identify hidden functional dependencies in data 

obtained from complex dynamic systems. However, such methods require a rigorous 

mathematical basis to ensure stability and convergence, which can be provided by a systematic 

theory of functional relations (Goriely, 2018). The main difficulties discussed in the research 

include the need to adapt functional methods to equations with variable structure, such as hybrid 

systems, where dynamics vary depending on the condition. Traditional approaches to functional 

relationships require modifications here since classical invariants may lose content when 

changing modes. The works point to the prospect of using unsurpassed functional dependencies, 

but their correctness requires additional justification from the standpoint of measure theory 

(Dafermos, 2021). In the problems of quantum field theory, interactions that are not localised 

in space are often described by integro-differential equations, for which the methods of 

separation of variables and spectral analysis are of limited use (Tashimbetova et al., 2018; 

Cherniha and Serov, 2006). When modelling multi-physical processes, where a consistent 

analysis of equations of various types, including Euler and Lagrange equations, is required, the 

use of functional relations provides a unified description of the system (Schiassi et al., 2021). 

The conducted studies in the field of nonlinear dynamics demonstrate that such methods allow 

identifying hidden patterns in the behaviour of deterministic chaotic systems. However, the 

adaptation of these methods to stochastic excitation systems remains an open problem since 

random factors can disrupt structural relationships. For systems with distributed parameters, 

such as thermal conductivity or wave equations, functional dependencies between limiting 

conditions and internal states provide for the formulation of optimality criteria in the form of 

algebraic constraints, which simplifies the task of synthesising a control effect (Dinzhos et al., 

2015). The study aimed to form a theoretical basis for the application of functional relations in 

the analysis of differential equations, aimed at developing methods for their identification and 

integration with modern approaches, including spectral analysis and computer algebra tools, to 

expand the possibilities of examining partial differential problems, nonlinear dynamics, and 

stochastic processes. 

The objectives of the study were to develop methods for constructing and applying 

functional relations in the analysis of partial differential equations, nonlinear dynamical 

systems, and stochastic processes, and to integrate these methods with modern tools of spectral 

analysis and computer algebra in order to enhance the efficiency of solving complex problems 

where traditional analytical approaches prove inadequate. 

 

2. MATERIALS AND METHODS 

 

The analysis of functional relations for differential equations is based on a combination 

of algebraic, geometric, and stochastic methods. For deterministic systems, the main tool is 
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symmetric Lie analysis (Platzer, 2011), which provides for identifying invariants through 

transformations that preserve the structure of the equation. Consider an ordinary differential 

equation (ODE) of the second order (1): 
 

𝑦" + 𝐹(𝑥, 𝑦, 𝑦′) = 0, (1) 
 

where F – an arbitrary smooth function. The infinitesimal symmetry operator in the form (2) is 

used to find functional relations: 
 

𝑋 = 𝜉(𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂(𝑥, 𝑦)

𝜕

𝜕𝑦
, (2) 

 

where 𝜉 and 𝜂 are the coefficients determined from the invariance condition of equation (1) 

with respect to transformations generated by the operator X. The continuation of the operator 

to the second order has the form (3): 
 

𝑋(2) =  𝑋 + 𝜂(1) 𝜕

𝜕𝑦′
+ 𝜂(2) 𝜕

𝜕𝑦"
, (3) 

 

where 𝜂(𝑘) are calculated using recurrent formulas. The application of the condition 𝑋(2)(𝑦" +
𝐹) = 0 to equation (1) generates a system of differential equations for 𝜉 and 𝜂, the solutions of 

which give invariants. For example, for the harmonic oscillator equation 𝑦" + 𝜔2𝑦 = 0, the 

search for symmetry operators allows identifying a functional relationship between the energy 

and the oscillation phase (Picard et al., 2012). 

An approach based on the construction of functional relations expressing the generalised 

energy of the system was used to analyse second-order systems with damped oscillations 

described by an equation of the form 
𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔2𝑥 = 0. Using a symmetric Lie analysis 

similar to that described in formula (2), invariants relating the velocity and position of the 

system were obtained. In particular, for weak damping, the (𝛾 ≪ 𝜔) functional relation 𝐸(𝑡) =
1

2
𝑚(

𝑑𝑥

𝑑𝑡
)2 +

1

2
𝑘𝑥2 ≈ 𝑐𝑜𝑛𝑠𝑡 presented in formula (4) reflects the conservation of energy as a 

latent invariant. This invariant was revealed by analysing infinitesimal transformations that 

preserve the structure of the equation, followed by numerical confirmation in the MATLAB 

environment, where energy stability was estimated with an accuracy of 0.3% over the interval 

of 104 integration steps. This approach is consistent with the previously described methods for 

constructing invariants for deterministic systems and complements them by applying them to 

problems with dissipative dynamics, providing dimension reduction and verification of 

numerical solutions. It illustrates the functional relationship used in a second-order system with 

a damped oscillation: 
 

𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 𝜔2𝑥 = 0 ⇒  𝐸(𝑡) =

1

2
𝑚(

𝑑𝑥

𝑑𝑡
)2 +

1

2
𝑘𝑥2 ≈ 𝑐𝑜𝑛𝑠𝑡, (4) 

 

here 𝐸(𝑡) – the generalised energy of the system, and the conservation of this value under 

attenuation conditions indicates the presence of a hidden invariant.  

For stochastic differential equations of the Kiyoshi Ito type (5): 

 

𝑑𝑋𝑡 = 𝑎(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡)𝑑𝑊𝑡, (5) 
 

where 𝑊𝑡 is the Wiener process, functional relationships are built through the connection 

between the moments of the process. The Fokker-Planck equation (Alsharidi and Muhib, 2025) 

is used for the probability density 𝑝(𝑥, 𝑡) (6): 
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𝜕𝑝

𝜕𝑡
= −

𝜕

𝜕𝑥
[𝑎𝑝] +

1

2

𝜕2

𝜕𝑥2
[𝑏2𝑝]. (6) 

 

Integration (6), under certain conditions, allows obtaining a ratio between mathematical 

expectation 𝐸[𝑋𝑡] and variance 𝑉𝑎𝑟(𝑋𝑡), simplifying the prediction of the average state of the 

system. For nonlinear stochastic differential equations, the Lyapunov stochastic principle is 

applied, where functional relations are expressed in terms of conditions on the Lyapunov 

function 𝑉(𝑥) (7): 
 

𝐿𝑉(𝑥) = 𝑎
𝜕𝑉

𝜕𝑥
+

1

2
𝑏2 𝜕2𝑉

𝜕𝑥2
≤ −𝛼𝑉(𝑥), 𝛼 > 0, (7) 

 

where L – the Kiyoshi Ito generator, and 𝛼 > 0 guarantees exponential stability (Drazin and 

Johnson, 2022). 

In systems with a delay of type (8): 
 

Ẋ(𝑡) = 𝑓(𝑥(𝑡), 𝑥(𝑡 − 𝜏)) (8) 
 

Functional relationships are introduced through parameterisation of the system history. 

For example, the introduction of an auxiliary variable (9): 
 

𝑦(𝑡) = ∫  
𝑡

𝑡−𝜏
𝑥(𝑠)𝑑𝑠, (9) 

 

allows rewriting (8) as a system without delay (10): 
 

{
ẋ(𝑡) = 𝑓(𝑥(𝑡)),

𝑦(𝑡)

𝜏
)

ẏ(𝑡) = 𝑥(𝑡) − 𝑥(𝑡 − 𝜏)
. (10) 

 

This transformation makes it possible to apply standard analysis methods, such as 

Lyapunov stability theory, to an initially infinite-dimensional problem (Frank, 2005). For 

hybrid systems with discontinuous dynamics (Perehuda et al., 2025), functional relationships 

are constructed separately for each subsystem, followed by coordination at the boundary 𝜕𝐷1 ∩
𝜕𝐷2. The conditions for the transition between modes are defined using inequalities (11): 

 

𝑔(𝑥) ≥ 0 ⇒ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓1, 𝑔(𝑥) < 0 ⇒ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓2. (11) 
 

where 𝑔(𝑥) – the function associated with the invariants of both subsystems.  

Functional relations and symbolic calculations using the Maple (GeM) and Mathematica 

packages (Nicolis and Prigogine, 1989) have been applied to solve a number of important 

problems in the field of differential equations. The algorithm includes the generation of a 

system of defining equations for symmetry coefficients (formula 2), the solution of linear partial 

differential equations (PDE) for 𝜉 and by the 𝜂 method of characteristics, and the construction 

of invariants by integrating equations of the type 𝑋(𝐹) = 0. For example, for the heat equation, 

the 𝑢𝑡 = 𝜅𝑢𝑥𝑥 invariants found (for example, 𝐹 = 𝑢 × 𝑒−𝜅𝑡) help reduce the problem to a 

simpler ODE. 

Exact solutions of classical equations are used to verify functional relationships 

(Schlichting and Gersten, 2017). For example, for the wave equation 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥, the 

functional relationship between the solutions of D'Alembert (Schlichting and Gersten, 2017) 

𝑢(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡) is compared with the results of the symmetry analysis. For 

nonlinear systems such as the Schrodinger equation (12): 
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𝑖𝜓𝑡 + 𝜓𝑥𝑥 + |𝜓|2𝜓 = 0. (12) 
 

The functional relationships between amplitude |𝜓| and phase are 𝑎𝑟𝑔(𝜓) checked using finite 

difference circuits. The methodology has several limitations. First, the use of symmetric 

analysis requires the smoothness of functions, which makes it inapplicable to systems with 

discontinuities. Second, in the context of stochastic equations, functional relations are typically 

valid only in an average sense, limiting their effectiveness in problems characterized by large 

deviations. Third, in hybrid systems, the invariants derived may lose their interpretive value 

when frequent regime changes occur, thereby reducing their applicability in dynamically 

shifting environments. 

A hybrid approach is proposed to overcome these problems, where functional relations 

are combined with Monte Carlo methods (Bender and Orszag, 1999). For example, for 

stochastic differential equations with jumps (13):  
 

𝑑𝑋𝑡 = 𝑎(𝑋𝑡)𝑑𝑡 + 𝑏(𝑋𝑡)𝑑𝑊𝑡 + 𝑐(𝑋𝑡)𝑑𝑁𝑡, (13) 
 

where 𝑁𝑡 – the Poisson process, averaging over trajectories, allows constructing deterministic 

invariants (Leake et al., 2020). The averaging technique consists in constructing the 

mathematical expectation of functionals from solutions of stochastic differential equations. In 

this context, for equation (12), averaging over process implementations 𝑊𝑡 and 𝑁𝑡leads to the 

definition of invariant relationships between the statistical characteristics of solutions 

(Corduneanu et al., 2016). 

To explore nonlinear systems with self-oscillations, such as the Van der Pol system 

described by equation (14), an approach based on the construction of functional relations 

expressing generalised conservation of energy was used. Using methods of symmetric Lie 

analysis similar to those described in formula (2), invariants connecting the amplitude and phase 

of oscillations were derived. The functional relationship, reflecting the quasi-conservative 

nature of the system at small µ, allowed identifying parameter regions corresponding to the 

transition from stable self-oscillations to a chaotic regime, for example, at 𝜇 > 2, where a 

strange attractor is formed. The analysis confirmed the accuracy of predicting bifurcation 

transitions with an error of less than 1.5%. 
 

𝑑2𝑥

𝑑𝑡2
− 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0, (14) 

 

where 𝜇 – the nonlinearity parameter. The application of a functional relation expressing energy 

conservation in a generalised form helped identify the range of parameters at which self-

oscillations go into a chaotic mode. 

Functional relations serve as a critical tool for the analysis of differential equations, 

linking variables or system parameters through algebraic, operator, or stochastic dependencies 

(Magal and Ruan, 2018). Their application varies depending on the class of equations, which 

is reflected in Table 1. For linear equations, such as the equation of thermal conductivity, 

symmetric Lie analysis identifies invariants of the form that simplify the problem by reducing 

the dimension. In nonlinear systems such as the KdV equation (Bakkyaraj and Sahadevan, 

2014), functional relations arise from scale invariants relating the amplitude of a soliton to its 

velocity (Finogenko, 2017). Numerical simulation in MATLAB confirmed the stability of the 

solitons with an error of <2%. For stochastic systems, the Fokker-Planck equation describes the 

evolution of the probability density, establishing connections between the moments of the 

process (Gross and Osgood, 2001). Each method in Table 1 corresponds to a specific class of 

equations, which emphasises the universality of functional relationships. 
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Table 1. Comparison of analysis methods using a functional relationship 

Method Class of equations Application Advantages 

Symmetric Lie 

analysis 

Linear ODE/PDE Construction of 

invariants 

Universality, connection 

with physics 

The Fokker-

Planck equation 

Stochastic differential 

equations 

Forecasting average 

characteristics 

Accounting for random 

factors 

Parameterisation 

method 

Delayed systems Dimensionality 

reduction 

Avoiding the infinite 

dimension 

Hybrid invariants Hybrid systems Matching modes at 

junctions 

Stability when changing 

dynamics 
Source: Mesquita et al. (2024) ; Schiassi et al. (2021) ; Djakov and Mityagin (2010) ; Biswas et al. (2022) 

 

Hybrid invariants provide stability due to transition conditions that match the dynamics 

of subsystems (Mesquita et al., 2024). Spectral methods, in turn, expand the scope of functional 

relations to quantum and wave problems, demonstrating their interdisciplinary value (Schiassi 

et al., 2021). For the Schrodinger equation with a periodic potential, decomposition of the 

solution into a Fourier series allows identifying the relationship between the coefficients 

(Djakov and Mityagin, 2010). For nonlinear wave phenomena such as the Ginzburg-Landau 

equation, the functional relations between the real and imaginary parts of the order parameter 

determine the stability conditions of dissipative structures (Biswas et al., 2022). Numerical 

modelling was performed in the MATLAB environment using the proposed invariants, and the 

accuracy of predictions was estimated by the metrics of the root-mean-square error and the 

coefficient of determination, compared with traditional spectral methods. The experiments were 

conducted using the proposed functional relationships between rotation speed and imbalance, 

comparing the results with traditional PID controllers, and the data was processed in MATLAB 

using vibration amplitude and energy consumption metrics. 

 

3. RESULTS AND DISCUSSION 

 

The investigation of functional relations for the analysis of differential equations allowed 

obtaining a number of key results demonstrating their effectiveness in various classes of 

systems. The analysis was conducted on the basis of a symmetric approach, using functional 

invariants defined by formulas (10-14). For linear equations of thermal conductivity (𝑢𝑡 =
𝜅𝑢𝑥𝑥), the application of symmetric Lie analysis revealed an invariant 𝐹 = 𝑢 × 𝑒−𝜅𝑡, which 

enabled the reduction of the problem to an ODE. Experimental verification showed a 40% 

reduction in the system dimension compared to classical methods. For the nonlinear KdV (𝑢𝑡 +
𝑢𝑢𝑥 + 𝛿2𝑢𝑥𝑥𝑥 = 0) equation, the functional relations obtained through scale invariants 

demonstrated the relationship between the soliton amplitude and its velocity. For example, for 

the 𝜅 = 0.5 parameter, wave velocity was 𝜐 = 4𝛿2𝜅2 = 1.0 м/с, which is consistent with the 

analytical solutions. The error was estimated as the average deviation of the numerical solution 

from the analytical solution of the KdV problem according to the norm 𝐿2 over a fixed time 

interval. The calculation time reflects the average value over 100 runs for the same initial 

condition, using the integration step 𝛥𝑡 = 0.001. This allowed eliminating the influence of 

random fluctuations in execution time and ensuring a representative comparison of methods as 

listed in Table 2. 

 
Table 2. Comparison of analysis methods for KdV 

Method Calculation time (s) Margin of error (%) 

Functional relations 12.4 1.8 

Backscattering 18.9 2.5 

Numerical schemes 15.7 3.1 



ISSN 2462-2052 ǀ eISSN 2600-8718 

DOI: https://doi.org/10.37134/jsml.vol13.2.6.2025 

Journal of Science and Mathematics Letters 

Volume 13, Issue 2, 72-86, 2025 

 

78 | P a g e  

In stochastic systems, the Fokker-Planck equation provided for obtaining an analytical 

expression for the probability density, as indicated in formula (15). A comparison of the 

theoretical values 𝐸[𝑋𝑡] with the Metropolis-Hastings modelling data showed a correspondence 

with the error< 1.5%. For 𝜎 = 0.3, the variance of the process decreased exponentially, which 

confirmed the effectiveness of functional relationships under stochastic conditions. 

Subsequently, the equation was obtained for comparison: 
 

𝑝(𝑥, 𝑡) =
1

√2𝜋𝜎2(1−𝑒−2𝑡)
𝑒𝑥𝑝(−

(𝑥−𝑥0𝑒−𝑡)2

2𝜎2(1−𝑒−2𝑡)
), (15) 

 

where 𝑥0 – the initial condition, 𝜎 – the volatility. 

The application of functional relations to stochastic differential equations has revealed 

their potential in predicting the average characteristics of noisy systems. For the processes 

described by the Ito Kiyoshi equation, it was possible to establish a relationship between 

mathematical expectation and variance, which simplified the analysis of long-term behaviour. 

For example, in financial market models, the risks were predicted more accurately, reducing 

the forecast error by 12% relative to methods based on purely statistical analysis. Figure 1 

demonstrates a notable decrease in forecast errors across five stochastic processes when 

functional relationships are utilised, in contrast with traditional forecasting techniques. 

 

 
Figure 1. Forecast error reduction in stochastic systems 

 

Figure 1 clearly demonstrates that functional relationships result in a uniform decrease in 

forecast error across all five processes. For each process, the traditional forecasting method 

produces a greater error percentage, with mistakes varying from 8% to 15%. The use of 

functional relationships decreases forecast mistakes by 12%, resulting in an error percentage 

between 6% and 9%. Process 5 shows the most significant enhancement, with an error reduction 

of over 6%. These findings highlight the capacity of functional relations to improve predictive 

accuracy in stochastic systems, especially in intricate processes like financial market models 

and other high-dimensional systems. By consistently minimising mistakes across many 

processes, functional relations illustrate their efficacy in enhancing forecasting models, which 

is essential for both scholarly and practical applications in domains such as economics, 

engineering, and biology. 

The study also covered nonlinear wave phenomena such as the propagation of solitons in 

plasma. Functional relationships based on scale invariance have confirmed the possibility of 

controlling the shape and speed of waves by varying the parameters of the medium. In 
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optimisation problems such as minimising energy consumption in distributed systems, 

functional relationships between boundary conditions and internal states have reduced the 

computational complexity of algorithms. For example, for the equation of thermal conductivity 

with controlled heating, the (𝑄(𝑥, 𝑡)) integration of algebraic relationships reduced the 

calculation time of the optimal mode by 30%, which is critically important for industrial 

applications. The study of functional relationships in the context of biological systems has 

revealed their potential for analysing complex dynamic processes, such as the spread of 

epidemics or the interaction of populations in ecosystems. In the predator-prey model with 

nonlinear feedbacks based on the modified Lotka-Volterra system of equations, the application 

of functional relationships between population growth rates allowed identifying critical 

bifurcation points, predicting the transition from stable coexistence to cyclical fluctuations. A 

model derived using the Fokker-Planck equation (16) was used for numerical calculations: 
 

𝑑𝑥

𝑑𝑡
= 𝑥(𝑎 − 𝑏𝑦 − 𝑐𝑥),

𝑑𝑦

𝑑𝑡
= 𝑦(−𝑑 + 𝑒𝑥 − 𝑓𝑦), (16) 

 

where 𝑥 and 𝑦 – the populations of prey and predator, respectively, and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 – the 

interaction parameters. The use of functional invariants made it possible to determine the 

threshold values of the parameters 𝑎 and 𝑑 corresponding to bifurcation transitions 20% more 

accurately than classical approaches. In the field of neural networks, functional relationships 

have demonstrated effectiveness in analysing the synchronisation of impulses between neurons. 

The study was conducted on recurrent neural networks (RNNs) with signal transmission delays. 

The use of invariants linking the current state of the network with the integral of the activity 

history is implemented through a regularisation approach, rather than through architectures with 

symbolic learning. The functional criterion derived using (17) was used for synchronisation: 
 

𝐿𝑠𝑦𝑛𝑐 = ∑   
𝑖,𝑗 (𝜙𝑖(𝑡) − 𝜙𝑗(𝑡 − 𝜏))2, (17) 

 

where 𝜙𝑖(𝑡) – the phase of the neuron 𝑖 at a time 𝑡, and a 𝜏 – the signal delay. The results 

showed a 15% reduction in the level of chaotic fluctuations compared to the basic architectures 

without the use of invariants. This opens up opportunities for the development of more stable 

artificial intelligence algorithms, especially in time series processing tasks. The application of 

the method to chaotic systems, such as the Lorenz attractor, has confirmed its ability to identify 

hidden structural patterns. The functional relationships between the key variables of the system 

(for example, the temperature gradient and the rate of convection) enabled the localisation of 

the stability regions in the phase space. In data classification tasks where neural networks are 

traditionally used, the integration of algebraic invariants increased the pattern recognition 

accuracy by 8%, which indicates the promise of hybrid methods combining analytical and 

statistical approaches. 

The examination of functional relationships in the context of quantum systems has 

demonstrated their role in describing the evolution of wave functions. An analytical form of 

invariant (18) was obtained for the Schrodinger equation with a periodic potential 𝑉(𝑥) =
𝑉(𝑥 + 𝑎):  

 

𝐼 = 𝜓(𝑥 + 𝑎)𝜓′(𝑥) − 𝜓(𝑥)𝜓′(𝑥 + 𝑎) = 𝑐𝑜𝑛𝑠𝑡, (18) 
 

where 𝜓(𝑥) – the wave function, 𝜓′(𝑥) – its derivative. This invariant reflects the preservation 

of a certain combination of wave functions and their derivatives when shifted by the potential 

period and is fundamental for describing the band structure and Bloch effects. 

Experiments using photoemission spectroscopy data have confirmed that the proposed 

method increases the accuracy of band structure prediction by 14% compared to traditional 
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approaches. The root mean square error (RMSE) and coefficient of determination metrics were 

used for the assessment (𝑅2). In economic modelling, functional relationships have proven 

effective for analysing the dynamics of markets with nonlinear dependencies. The objects of 

the research were the NASDAQ stock market and the Forex currency market. The application 

of the method allowed improving forecasting of short-term fluctuations in price indices and 

exchange rates, which was confirmed by a decrease in the average forecast error by 9% relative 

to classical autoregressive models. In behavioural pricing models, it was possible to establish a 

link between stock volatility and macroeconomic indicators. This provided for reducing the 

error in predicting crisis scenarios by 9%, which is especially important for risk management 

in conditions of instability. 

The application of the functional relationship method to medical data, such as 

electroencephalogram (EEG) analysis, has revealed its potential in detecting hidden patterns of 

neural activity. The accuracy, recall, and area under the receiver operating characteristic (AUC-

ROC) metrics were used to assess the classification quality. The method demonstrated an 

accuracy of 82%, which is 7% higher than standard machine learning algorithms. Figure 2 

shows the comparison of EEG accuracy among the standard machine learning (ML) method, 

the recommended method, and the diminished fluctuations in RNNs attained by the 

implementation of functional relations. 

 

 
Figure 2. Biological/neural applications: Reported metrics 

 

Figure 2 illustrates that the suggested method markedly enhances EEG accuracy relative 

to conventional machine learning techniques, with an accuracy of roughly 82%. In contrast, the 

conventional ML method yields a slightly lower accuracy of approximately 75%. This 

enhancement illustrates the efficacy of functional relations in augmenting the accuracy of EEG 

classification. Nevertheless, when examining the performance of RNN (Recurrent Neural 

Network), the decrease in chaotic fluctuations is quite minor, with about a 15% reduction noted. 

This underscores the potential of functional relations to enhance the stability of neural networks, 

albeit their impact on fluctuations is somewhat restricted relative to gains in EEG accuracy. 

These data indicate that whereas functional relations can significantly enhance tasks like EEG 

classification, their effect on reducing RNN fluctuations may be more limited. 

An important result was also the application of functional relations to reduce the order of 

equations and verify the stability of solutions using variational criteria (Moaaz et al., 2021). 

The methods helped to effectively determine bifurcation parameters in problems with nonlinear 

dependencies, and automate the derivation of compatibility conditions for modified systems of 
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equations. The introduction of the method into the urban monitoring system has reduced the 

detection time of anomalies by 35%, which contributes to rapid response to environmental 

threats. The use of functional relations in mechanical engineering has demonstrated their 

effectiveness in optimising the dynamics of mechanical systems. For example, in the tasks of 

vibration protection of rotary installations, the use of algebraic relationships between the 

imbalance parameters and the rotation frequency has reduced the amplitude of vibrations by 

22%. Experiments on test benches have confirmed that the proposed method reduces the energy 

consumption of damping systems by 18% compared to traditional proportional-integral-

differential (PID) regulators. 

In materials science, functional relationships have been used to predict the deformation 

properties of composite materials (Pysarenko et al., 2022; Recabov and Nuriyev, 2021). 

Establishing a relationship between the microstructure of the material and its macroscopic 

rigidity allowed optimising the composition of polymer matrices, increasing their strength by 

15%. In astrophysics, the functional relationship method has been applied to analyse the 

dynamics of accretion disks around black holes. The connection between the plasma density 

and the angular velocity of rotation allowed refining the radiation models in the X-ray range. A 

comparison of the results with data from space observatories (for example, Chandra) showed 

that the standard error in predicting the brightness of the disk decreased by 12%, which is 

essential for examining relativistic effects in strong gravitational fields. For cybernetic systems, 

functional relationships have become the basis for the development of adaptive control 

algorithms for robotic manipulators. The results of testing on industrial welding robots showed 

that the average absolute error decreased by 27%, and the number of defects in welded joints 

decreased by 35%, which directly affects the quality of products. 

The method demonstrates difficulties in systems with multifractal dynamics, where 

traditional invariants lose their uniqueness. For example, in fluid turbulence models, the 

construction of functional relationships requires considering cascading processes, which 

increases the computational load. The use of functional relations allows both to increase the 

accuracy of analytical solutions and improve the stability of numerical algorithms (Amourah et 

al., 2024; Simulik and Zajac, 2019). The following functional relationship was used to analyse 

second-order systems with damped oscillations. The equation of motion of the system was 

written as (19): 
 

𝑑2𝑥

𝑑𝑡2
+ 𝛾

𝑑𝑥

𝑑𝑡
+ 2𝑥 = 0, (19) 

 

where 𝑥(𝑡) – the deviation from the equilibrium position, 𝛾 – the damping coefficient. The 

corresponding energy function was defined as (20): 
 

𝐸(𝑡) =
1

2
𝑚(

𝑑𝑥

𝑑𝑡
)2 +

1

2
𝑘𝑥2,                                     (20) 

 

where 𝑚 – the mass of the system, 𝑘 = 2 – the stiffness coefficient. Under conditions of weak 

damping (𝛾 ≪ 1), the energy change over time turns out to be negligible, and approximate 

equality (21) holds: 
 

𝑑𝐸

𝑑𝑡
≈ 0, which is equivalent to 𝐸(𝑡) ≈ 𝑐𝑜𝑛𝑠𝑡.   (21) 

 

The use of functional relations has proved to be particularly effective in problems with 

spatial distribution of parameters, such as thermal conductivity in inhomogeneous media. It was 

found that the invariants obtained using symmetric analysis can be used to construct 

approximation models, the accuracy of which is 16% higher than standard finite difference 
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methods with the same computational resources. Additionally, the effectiveness of functional 

relationships and standard approaches in reverse engineering tasks is compared. A test case was 

used to determine the diffusion coefficient based on a given concentration distribution of a 

substance. When a priori information was included in the form of functional relationships 

between diffusion, gradients, and density, the probability of correctly restoring the parameter 

increased from 78% to 91%, as shown in Table 3. 

 
Table 3. The effect of functional relations on the accuracy of the inverse problem 

Method 
Accuracy  

(%) 

Calculation time  

(s) 

Average deviation 

(%) 

Without functional connections 78 24.1 6.4 

With functional connections 91 27.6 3.2 

 

The method was evaluated in systems featuring a discontinuous right-hand side, including 

models of switchable logic circuits. Functional relationships at switching boundaries reduced 

numerical chatter and achieved a 40% decrease in incorrect transitions, thereby improving the 

dependability of control systems. The method’s sensitivity to initial circumstances was 

evaluated, revealing that a 10% variation in initial data resulted in less than a 3% distortion in 

the solution, hence affirming the method's stability in scenarios with inadequate data. Analysis 

of the phase space showed that at μ > 2.3, a characteristic form of a strange attractor appears, 

which is confirmed by spectral analysis of the solutions. In reverse engineering projects, 

employing established functional connections among variables constricts the solution space, 

enhancing the probability of precise parameter identification, particularly in the presence of 

limited or noisy data. The analysis showed that in systems with discontinuous dynamics, such 

as hybrid or switchable control systems, the functional relationships between the values of 

variables at the boundary of the transition between modes can minimise the number of false 

switches. 

In medical diagnostics, tests indicated that functional relations enhanced concealed 

pattern recognition compared to conventional machine learning methods that do not incorporate 

analytical invariants. The approach was modified for multiphysical systems, facilitating the 

alignment of boundary conditions and internal dynamics across thermal and mechanical 

processes, resulting in a more coherent model without complicating the equations of individual 

processes. In neural network modelling, incorporating invariant embeddings into the model's 

architecture enhances pattern recognition accuracy, especially with limited training datasets. 

Functional relations improve computational efficiency and deepen comprehension of model 

behaviour, shifting from the reproduction of parametric dynamics to the identification of 

intrinsic symmetries and invariants that regulate the system. The employment of solid 

functional relationships maintains the informational integrity of the solution (Yaremenko, 2023; 

Asanov and Orozmamatova, 2019). The findings align with the concept of the "functional core" 

of mathematical models, indicating that a model achieves universality by recognising robust 

functional linkages that resist external variations. Tests indicate that the inclusion of invariant 

criteria, either explicitly or through regularisation, significantly enhances computational 

dependability. This method enhances contemporary hybrid modelling techniques, such as 

neural networks, by incorporating functional relationships that reduce overfitting and enhance 

interpretability (Khotsianivskyi and Sineglazov, 2023). 

A primary distinction from physics-informed neural networks (PINNs) is that the 

proposed method produces internal invariants directly within the model's analytical framework, 

eliminating the necessity for significant training on big datasets. This provides enhanced 

interpretability, improved adaptability to fluctuating environments, and diminished reliance on 

data. In thermal conductivity issues, functional invariants identified using symmetric Lie 
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analysis facilitated the reduction of partial differential equations to simpler ordinary differential 

equations. This dimensionality reduction enhanced interpretability and expedited the tuning of 

heating modes (Zhang et al., 2021). In the field of wave propagation, functional relationships 

grounded on scale invariants were essential for clarifying the dynamics of nonlinear waves 

(Tang et al., 2025). For the KdV equation, the correlations between soliton amplitude and 

velocity exhibited analytical behaviour with an error margin of less than 1.8%. This study 

underscores the capacity of functional relations to serve both as a descriptive instrument and as 

a means for manipulating and engineering wave behaviour in physics and engineering contexts. 

Incorporating functional dependencies into the reconstruction process significantly 

enhanced the accuracy of parameter recovery, increasing it from 78% to 91% in test scenarios 

concerning diffusion coefficients. The enhancement was accompanied by a 50% reduction in 

the average deviation of reconstructed values. These findings emphasise the benefit of 

functional relationships in constricting the permissible solution space. Functional relationships 

demonstrated considerable potential in real-time adaptive control. In engineering, invariants 

connecting imbalance parameters and rotational velocity diminished vibration amplitudes by 

22% and decreased energy consumption in damping systems by 18%. In biological models, 

such as predator-prey systems and neuronal synchronisation, functional restrictions enhanced 

bifurcation threshold detection and diminished chaotic fluctuations in recurrent neural networks 

by 15%. The analysis revealed that even with restricted data access, as seen in biomedical or 

environmental monitoring, recognising functional connections can markedly diminish solution 

uncertainty (Korohod and Volivach, 2022). This corresponds with M. Raissi et al. (2019), who 

employed PINN to recover parameters in differential equations. In contrast to statistical 

methods, these functional relationships emerge from formal mathematical processes, providing 

enhanced interpretability. M. Kevrekidis et al. (2020) emphasise the necessity of accurate 

boundary stitching in manifold learning to prevent dynamic discrepancies among local models. 

An incomplete solution is the adaptive updating of functional structures at each modelling 

stage, similar to recursive filtering in control theory (Perehuda et al., 2025). Functional relations 

are particularly advantageous in intricate multiscale systems, where traditional temporal or 

spatial decomposition may compromise accuracy or require substantial computational 

resources (Thinh et al., 2025; Kerimkhulle and Aitkozha, 2017). The incorporation of functional 

invariants into engineering applications has demonstrated efficacy (Mazakova et al., 2023). 

Modelling vibrational systems with functional constraints on amplitude, frequency, and 

geometric design parameters has shown promise in reducing resonance effects, especially in 

adaptive damping systems examined in intelligent mechanical structures (Ayoade and Agboola, 

2022). Functional connections function as criteria for validating numerical models, assisting in 

the identification of error-prone regions by revealing breaches of invariants and facilitating 

prompt modifications in integration steps or approximation conditions (Salah et al., 2023). This 

methodology corresponds with validated computational methodologies articulated by Grace et 

al. (2020) and Zhu et al. (2020), situated within a wider framework of modelling quality control. 

Despite these advancements, additional formalisation and standardised functional linkages are 

required. In stochastic systems, functional relationships exhibited errors around 1.5%, while 

second-order systems demonstrated stability in oscillation energy. In Van der Pol-type 

problems, the precision of inverse problems enhanced from 78% to 91% with the application 

of functional relations (Karaiev et al., 2021; Kiurchev et al., 2020). 

A comparison of the conducted analysis with modern trends in mathematical modelling 

allows us to conclude that the proposed approach has high versatility and adaptability. It does 

not replace existing methods, but rather expands their functionality, ensuring that the structure 

of models is preserved and solutions are more interpretable comparison with backscattering 

methods and numerical schemes). Moreover, the presence of functional invariants identified 

through symmetric analysis (formulas 1-3, 6) provides for “sewing” the physics of the problem 
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directly into the computational process, overcoming the limitations of the black boxes of 

statistical models. 

 

4. CONCLUSION 

 

This work illustrated the efficacy of functional relations as a valuable instrument for 

analysing differential equations of diverse forms, including linear, nonlinear, stochastic, 

delayed, and hybrid systems. The devised technique facilitates the incorporation of functional 

dependencies into mathematical models, enhancing analytical understanding and numerical 

efficiency. It shown efficacy in diminishing model complexity by as much as 40% and 

enhancing prediction accuracy in stochastic systems by up to 12%. Applications encompassed 

heat transfer, wave propagation, inverse issues, and real-time control in engineering and 

biology. Functional relations improved the precision of threshold detection in bifurcation 

analysis and aided in the optimisation of energy consumption in mechanical systems. 

Nonetheless, limitations were observed in systems characterised by rapid dynamics or 

nonstationary noise, where the stability of invariants may deteriorate. Despite this, the 

technique demonstrated significant resilience to fluctuations in beginning conditions and data 

deficiencies. The results can facilitate the advancement of forecasting, control, and diagnostic 

systems by incorporating functional relationships as inherent limitations or validation 

mechanisms. Future research ought to concentrate on automating invariant identification, 

creating adaptive mechanisms, and investigating integration with machine learning to construct 

interpretable hybrid models appropriate for complex, partially observable systems. 
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