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ABSTRACT 
 
Due to the global ecological crisis, accurate temperature prediction has 
become increasingly important, especially for environmental sustainability 
worldwide. The main motivation for this research is the increasing 
importance of temperature prediction due to the global ecological crisis. 
Considering the impacts of climate change and environmental sustainability, 
making accurate temperature predictions has become a critical necessity for 
the conservation of natural resources and the fight against climate change. 
In addition to traditional statistical techniques, the success of deep learning 
methods in solving complex relationships has become the focal point of 
research in this field.  A large number of statistical techniques are used to 
predict air temperatures, but deep learning methods have recently become 
popular for complex relationships. More layers distinguish Deep Artificial 
Neural Networks (DANNs) from traditional Artificial Neural Networks (ANNs). 
Since they have multi-layered designs, they perform high-level inference in 
data analysis. This research has predicted temperature values using the 
Dendritic Neuron Model-Based Explainable Feedback Deep Artificial Neural 
Network (DeepDenT) architecture. The study consists of 412 monthly 
maximum temperature data covering 1991 to 2022 from the Giresun 
province. According to the results, the AutoDeepDenT method obtains more 
accurate predictions than all other tested models. This highlights the 
effectiveness of advanced deep learning techniques in temperature 
prediction and their importance for environmental sustainability. 
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1. INTRODUCTION  
  

Today, one of the most pressing global issues is climate change, primarily driven by rising 

average temperatures and increasing concentrations of greenhouse gases in the atmosphere. The 

escalation of air temperatures leads to significant environmental challenges, including climate change 

and drought. Accurate predictions of changes in air temperatures are crucial for formulating 

sustainable environmental policies and implementing necessary precautions (Fister et al., 2023; 

Seager et al., 2019; Doblas-Reyes et al., 2013). In this context, temperature estimates and climate 

forecasts, which serve as indicators of global warming, have emerged as vital areas of research. 

Climate predictions aim not only to analyze current climate parameters but also to provide insights into 

future conditions. The results of these predictions guide policymakers in various domains, such as 

agriculture, disaster risk management, and energy planning (Salcedo-Sanz et al., 2024; Pepler et al., 

2015). Air temperature, a fundamental physical variable of the atmosphere, influences not only the 

functioning of climate systems but also the vital activities of humans and other living organisms (Tajfar 

et al., 2020; Valipour et al., 2020). Furthermore, temperature data play a critical role in accurately 

predicting other meteorological variables, such as evaporation, runoff, and solar radiation (Jovic et al., 

2018; Marzo et al., 2017; Tang et al., 2012).  

In recent years, methods for forecasting air temperatures have shifted from traditional statistical 

models to artificial intelligence-based approaches. Deep Learning (DL), a powerful machine learning 

technique, facilitates the extraction of meaningful patterns from complex datasets through the use of 

multilayered artificial neural networks (Deng & Yu, 2014). Deep Artificial Neural Networks (DANNs) 

outperform conventional artificial neural networks by incorporating additional hidden layers, thereby 

enabling the processing of complex, high-dimensional data and allowing for the extraction of more 

abstract features (Schmidhuber, 2015). The learning process typically involves minimizing a loss 

function through the backpropagation algorithm (Rumelhart et al., 1987). 

In the research conducted by Eğrioğlu and Baş (2025), a deep learning model derived from the 

Dendritic Neuron Model, named AutoDeepDenT, was implemented to forecast monthly temperature 

maxima for Giresun province in Turkey. This model was specifically developed for subsequent 

applications in other environmental predictive modeling challenges. Unlike conventional deep learning 

systems, this model enhances synaptic functions by incorporating additional nerve-like units, thereby 

simulating a more realistic dendritic processing. Moreover, the feedback loop is known to improve 

accuracy over time due to recurrent learning. As previously mentioned, the motivation for this research 

lies in utilizing DeepDenT across different domains with environmental datasets to achieve greater 

effectiveness in problem-solving. The current objective is to evaluate the effectiveness of 

AutoDeepDenT on the entire temperature dataset to promote broader acceptance of the model.  

For this study, data were primarily collected from the Trabzon Meteorology Regional 

Directorate, which includes 412 monthly maximum temperature readings spanning from 1991 to 2022. 

The estimation process was conducted using an automatic prediction tool developed in MATLAB by 

the authors (The MathWorks, 2024). Temperature prediction is critical in areas such as climate 

change, agriculture, energy planning, and disaster management. In this context, artificial neural 

networks (ANNs) and deep learning-based methods are widely employed. The literature encompasses 

studies conducted across various geographical regions, utilizing different data types and time 

intervals, thereby revealing the complexity and diversity of the temperature prediction problem. In this 

regard, the performance of ANNs and deep learning models has been assessed in terms of hidden 

layer configurations and application areas.  

Traditional ANNs have long been favored for temperature prediction. Ustaoglu et al. (2008) 

tested backpropagation ANN (FFBP), radial basis function (RBF), and generalized regression neural 

network (GRNN) models using daily average, maximum, and minimum temperature data from Turkey 

between 1989 and 2003. They produced daily temperature forecasts with varying hidden layer 

configurations. Similarly, Afzali et al. (2012) developed a single hidden layer (15-neuron) ANN model 

using daily and monthly temperature data from Iran between 1961 and 2004, making predictions for 

one day and one month ahead. Dombayci and Golcu (2009) utilized a Levenberg-Marquardt algorithm-

based ANN model to generate daily average temperature predictions using monthly, daily, and 

previous day’s average temperature data from 2003 to 2006. These studies illustrate that while ANNs 

are effective for time series data, their capacity to learn complex patterns is limited due to the restricted 

number of layers. In addition to ANN-based models, studies integrating geographic and meteorological 
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variables have also gained attention. Bilgili and Şahin (2009) performed monthly temperature 

predictions using a multi-layer perceptron (MLP) model that incorporated latitude, longitude, elevation, 

and month data from Turkey between 1975 and 2006, utilizing a single hidden layer (32-neuron) 

structure. Similarly, Kisi and Shiri (2014) applied a single hidden layer (four neurons) ANN model with 

the same variables using data from Iran between 1956 and 2010. Sahin (2012) developed single 

hidden layer ANN models with 14 and 24 neurons, leveraging city, month, elevation, latitude, 

longitude, and monthly average land surface temperature data from Turkey between 1995 and 2005. 

These studies demonstrate that integrating geographical data into temperature prediction models 

enhances accuracy. 

Deep learning approaches stand out compared to traditional ANNs due to their ability to handle 

more complex data structures. Tran et al. (2021) compared traditional ANNs, recurrent neural 

networks (RNNs), and long short-term memory (LSTM) models using daily maximum temperature 

data from South Korea between 1976 and 2015. They reported that LSTM with 1-20 hidden neurons 

and 1-3 hidden layers performed superiorly in predictions ranging from 1 to 15 days ahead. Zhang 

and Dong (2020) developed a convolutional recurrent neural network (CRNN) with four past 

temperature data maps from China spanning 1952 to 2018, utilizing three convolutional layers, one 

LSTM, and one dense layer to predict future temperature maps. These studies indicate that deep 

learning models, particularly LSTM and convolutional networks, offer high accuracy for time series 

and spatial data. Regional diversity is an important factor in designing temperature prediction models. 

De and Debnath (2009) developed a single hidden layer (2 neurons) ANN model using maximum and 

minimum temperature data from India between 1901 and 2003, focusing on predicting the monsoon 

months (June-August). Another study by Salcedo-Sanz et al. (2016) employed an MLP model using 

data on the previous month’s temperature, Southern Oscillation Index (SOI), Indian Ocean Dipole 

(IOD), and Pacific Decadal Oscillation (PDO) from Australia and New Zealand between 1900 and 2010 

to produce monthly average temperature forecasts. These studies emphasize that regional climate 

characteristics and additional meteorological variables enhance model performance. 

Among deep learning models, LSTM, CNN, and hybrid architectures are frequently preferred 

for time series prediction. Lee et al. (2020) compared MLP (6 hidden layers), LSTM (2 hidden LSTM 

+ 3-6 dense layers), and CNN (5 convolutional + 2 dense layers) models using multiple variables such 

as temperature, humidity, and solar radiation from South Korea between 2009 and 2018. They noted 

that LSTM yielded better results in predicting daily average, minimum, and maximum temperatures. 

Kreuzer et al. (2020) tested single and multivariable LSTM and ConvLSTM models with temperature, 

humidity, cloud cover, and wind data from Germany between 2009 and 2018, reporting that a 

ConvLSTM model with 6 convolutional layers, 2 LSTM layers, and 2 dense layers achieved high 

accuracy in 24-hour temperature predictions. Roy (2020) compared MLP (2 layers, 16 neurons), LSTM 

(16 hidden neurons), and CNN+LSTM (32 convolution filters+16-neuron LSTM) models using seven-

day meteorological data from New York between 2009 and 2019, highlighting the superior 

performance of the CNN+LSTM model for one-day and ten-day predictions. Abhishek et al. (2012) 

employed a 5-hidden-layer ANN model using 10 years of historical data to perform daily maximum 

temperature predictions in Canada between 1999 and 2009. Bas et al (2024) proposed the dendritic 

neuron model artificial neural networks from being affected by the outliers in the data set; a robust 

learning algorithm based on Talwar’s m estimator, median statistics to prevent the effect of outliers in 

the inputs, and a new data preprocessing method are used together in a network structure. These 

studies underscore the effectiveness of ANN models in multivariable and short-term predictions. 

In contrast to the previously mentioned studies, the proposed AutoDeepDenT model offers an 

explainable feedback-based deep artificial neural network architecture grounded in a dendritic neuron 

model. In this research, AutoDeepDenT was utilized to predict temperatures based on 412 monthly 

maximum temperature records from Giresun province between 1991 and 2022. The model achieved 

high accuracy in 12-month forecasts when evaluated using the RMSE metric. This study advances 

the current literature by introducing AutoDeepDenT as a novel, effective, and explainable AI 

framework for accurate temperature prediction. 
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2.  METHODOLOGY 
 
2.1. Dataset 
 

 The dataset used in this study consists of monthly maximum temperature data from Giresun 

province located in the Eastern Black Sea Region of Türkiye. Located between the Coastal Mountains 

and the Black Sea, Giresun is one of the important cities of Türkiye with agricultural diversity, 

characterized by a humid subtropical climate. Agricultural products grown in special climate conditions, 

especially hazelnuts, tea and kiwi, are significantly affected by air temperature. Therefore, accurate 

modeling of temperature trends in the region is extremely important for agricultural planning and crop 

productivity. The dataset used in this study covers the 32-year period between January 1991 and 

December 2022 and consists of a total of 412 monthly observations. The data were obtained with 

special permission from the Trabzon Meteorological Regional Directorate affiliated to the General 

Directorate of State Meteorological Services of Türkiye. Before modeling the data, the dataset was 

divided into training, validation and test subsets to ensure a more accurate and objective evaluation 

of the forecast performance. 

 
2.2. DeepDenT Automatic Forecasting Method 

 
To forecast the highest monthly temperatures in Giresun province, this study employs the 

DeepDenT model, which is a sophisticated deep artificial neural network inspired by the dendritic 
neuron model developed by Egrioglu and Bas (2024). One of the key advantages of DeepDenT is its 
ability to minimize reliance on subjective opinions, providing predictions that are purely data-driven 
and unbiased. The model integrates dendritic cells (DnCs) into its deep feedback artificial neural 
network framework. At its core, DeepDenT features an output layer built on a classical fully connected 
(FC) layer that uses an additive aggregation function. What sets DeepDenT apart from traditional 
neural networks is its partially connected structure, where DnCs are arranged in a sequential and 
hierarchical manner. The automatic forecasting method introduced by Eğrioğlu and Baş (2024) 
streamlines the prediction process by removing the need for practitioners to tackle complex technical 
details, thus allowing for more efficient forecasting solutions (Eğrioglu & Bas, 2024). The architecture 
of DeepDenT is illustrated in Figure 1. 

 

 
Figure 1. DeepDenT Architecture (Egrioglu & Bas, 2024) 

 
The automatic estimation method used in this study was developed based on the DeepDenT 

architecture in Bas and Egrioglu (2025). It was designed to minimize the need for manual intervention, 
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allowing users to systematically carry out the modeling process. The method aims to improve 
estimation performance through a structure that incorporates steps such as statistical controls, 
determination of lag variables, and hyperparameter optimization. The steps of the automatic 
estimation method defined are listed below: 

Step 1: Determination of Hyperparameter Ranges 
  Number of Hidden Layers: Minimum and maximum values are defined. 
  Number of Dendritic Cells: The values  𝑚𝑚𝑖𝑛 and  𝑚𝑚𝑎𝑥 with in each cell. 
  Time Steps: Minimum and maximum values ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 

  Number of Repetitions for Random Initial Weights::𝑛𝑟𝑒𝑝𝑒𝑎𝑡 

  Number of Training, Validation, and Test Data Samples:: 𝒏𝒕𝒓𝒂𝒊𝒏, 𝒏𝒗𝒂𝒍 ve 𝒏𝒕𝒆𝒔𝒕 

  Time Series Period:𝒔 

  Bootstrap Repetition Count: 𝒏𝒃𝒔𝒕 

  Number of Forecasts: 𝒏𝒇 

Step 2: The real-time series consisting of a total of n observations, 𝑋𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑛}, is divided 
into three sets: training, validation, and test sets: 

 

𝑋𝑡
𝑡𝑟𝑎𝑖𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛𝑡𝑟𝑎𝑖𝑛} (1) 

𝑋𝑡
𝑣𝑎𝑙 = {𝑥𝑛𝑡𝑟𝑎𝑖𝑛+1, 𝑥𝑛𝑡𝑟𝑎𝑖𝑛+2+, … , 𝑥𝑛𝑡𝑟𝑎𝑖𝑛+𝑛𝑣𝑎𝑙

} (2) 

𝑋𝑡
𝑡𝑒𝑠𝑡 = {𝑥𝑛𝑡𝑟𝑎𝑖𝑛+𝑛𝑣𝑎𝑙+1, 𝑥𝑛𝑡𝑟𝑎𝑖𝑛+𝑛𝑣𝑎𝑙+2+, … , 𝑥𝑛} (3) 

 
Step 3: Stationarity in the time series is checked. If the time series is not stationary, stationarity 

is achieved by differencing. First, it is investigated whether there is stationarity arising from 
seasonality. If the condition given in Equation (4) is satisfied, seasonal differencing is applied using 
Equation (5) to achieve stationarity. 

 

|𝐴𝐶𝐹𝑚| > 1.645√
1 + 2(𝐴𝐶𝐹1 + ∑ 𝐴𝐶𝐹𝑖

2)𝑚−1
𝑖=2

𝑛
 

(4) 

𝑧𝑡 = (1 − 𝐵𝑠)𝐷𝑥𝑡 (5) 

 

Subsequently, s represents a seasonality period. After examining non-stationarity related to 

seasonality, non-stationarity caused by trends is investigated using unit root tests. The Augmented 

Dickey-Fuller test is applied to the time series. If the series contains a unit root, the differencing 

process is applied according to Equation (6). 

 
Step 4: Partial autocorrelation coefficients𝑟𝑘𝑘 (𝑘 = 1,2, … , 𝑛𝑙𝑎𝑔) and the variances of these 

coefficients are calculated to determine the confidence intervals for the time series. 

 
 
Partial autocorrelation coefficients are calculated using Equation (8). 
 

𝑟𝑘𝑘 =
𝑟𝑘 − ∑ 𝑟𝑘−1,𝑗𝑟𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝑟𝑘−1,𝑗𝑟𝑗
𝑘−1
𝑗=1

 
(8) 

 
The variance of these coefficients is expressed as in Equation (9). 
 

𝑉(𝑟𝑘𝑘) =
1

𝑛𝑡𝑟𝑛

± 2√𝑉(𝑟𝑘𝑘) 
 (9) 

 

𝑤𝑡 = (1 − 𝐵)𝑑𝑧𝑡 (6) 

𝑟𝑘 =

1
𝑛𝑡𝑟𝑛 − 𝑘

∑ (𝑥𝑡 − 𝑥̅)(𝑥𝑡−𝑘 − 𝑥̅)𝑛𝑡𝑟𝑛
𝑡=𝑘+1

1
𝑛𝑡𝑟𝑛

∑ (𝑥𝑡 − 𝑥̅)2𝑛𝑡𝑟𝑛
𝑡=1

 (7) 
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Lags corresponding to partial autocorrelation coefficients outside the bounds are determined, 
and these lags form the elements of the 𝐿𝑎𝑔𝐾 set. The membership function for the𝐿𝑎𝑔𝐾 set is defined 
by Equation (10) for, 𝑘 = 1,2, … , 𝑛𝑙𝑎𝑔 . 

 
Step 5: Validation and test performances are calculated for all possible hyperparameter 

combinations(𝑚, 𝑞, ℎ). The number of combinations is calculated based on the defined ranges. 

Step 5.1: Random initial weights are generated a specific number of nrepeat times.  

Step 5.2: The significant inputs are determined for each random weight set. 
Step 5.3: The best validation results obtained with different initial weights are selected. 

Step 6: The hyperparameter set with the best performance is determined. 
Step 7: The test performance is evaluated for the selected hyperparameter set, and the process 

is completed by calculating predictions from the model. 
 
3.  RESULTS AND DISCUSSION 
 
 In this study, we utilized monthly maximum temperature records from Giresun province 
spanning 1991 to 2022 to generate forecasts using the DeepDenT model. The dataset, containing a 
total of 412 monthly observations, provides a robust basis for analyzing temperature trends over more 
than three decades. The initial and final ten values of the dataset, presented in Table 1, illustrate the 
fluctuations in maximum temperatures throughout this period, highlighting both seasonal variations 
and potential long-term trends. 
 
Table 1. Dataset (First and Last 10 Values) 

City Data Order Year Maximum Temperature 

Giresun 1 1991 14.6 
Giresun 2 1991 18.8 
Giresun 3 1991 22 
Giresun 4 1991 26 
Giresun 5 1991 30 
Giresun 6 1991 26.6 
Giresun 7 1991 29 
Giresun 8 1991 29.3 
Giresun 9 1991 25 
Giresun 10 1991 27.2 
Giresun 403 2022 31.7 
Giresun 404 2022 19.9 
Giresun 405 2022 19.7 
Giresun 406 2022 21.9 
Giresun 407 2022 34.6 
Giresun 408 2022 26.5 
Giresun 409 2022 29.7 
Giresun 410 2022 29.6 
Giresun 411 2022 32.2 
Giresun 412 2022 32.5 

 
The modelling process involved uploading the dataset to an automatic forecasting application, 

where essential parameters were meticulously specified. Given the monthly frequency of the data, we 
defined the time series period as 12 months. Each of the training, validation, and test sets was 
allocated 12 observations, ensuring a balanced approach to model evaluation. Furthermore, the 
configuration of the model was carefully calibrated, with the number of dendritic cells set to 4 and the 
forecast horizon determined to be 12 months. The optimal configuration of the DeepDenT model, 
identified through rigorous training, included a time step (h) of 1, one hidden layer (q), one dendrite 
(m), and a significant lag of 12. This configuration reflects a thoughtful adaptation of the model to the 
inherent characteristics of the temperature data. The actual time series values were visualized in 
Figure 2, providing a clear representation of the temperature trends over the years. The RMSE value 
obtained for in-sample prediction performance when applying the AutoDeepDenT method was 4.0973. 
The error metrics obtained for the test set in out-of-sample performance are given in Table 2.  
 
Table 2. Out of Sample Performance of AutoDeepDenT 

RMSE MAPE SMAPE MASE REIMAE 

7.1492 114.2208 50 0.905943 1.279655 

 

𝜇𝐿𝑎𝑔𝐾(𝑘) = {
1,         𝑖𝑓  𝑟𝑘𝑘 > 2√𝑉(𝑟𝑘𝑘) 𝑜𝑟 𝑟𝑘𝑘 < −2√𝑉(𝑟𝑘𝑘)

0,                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 
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Additionally, in Figure 3, multi-step forecasts were obtained for out-of-sample performance and 
compared with actual values. Following the training of the DeepDenT model, the forecast values were 
plotted against the actual values, as shown in Figure 3. This comparison not only illustrates the model's 
predictive capabilities but also serves as a visual verification of its performance. Upon examining 
Figure 3, it is observed that there is a notable similarity between the actual values (blue line) and the 
predicted values (orange line); however, the predicted values fall short of the actual values during 
certain periods. Both lines exhibit fluctuations, with significant increases in actual values particularly 
noted at the 5th and 10th positions. Overall, while the predicted values trend closely to the actual 
values, it is evident that the predictions lag behind, especially at the 3rd and 11th positions. This 
situation serves as an important indicator for assessing the predictive success of the model. 

 

 
Figure 2. Real Time Series (1991-2022) 

 

 
Figure 3. Actual Values Versus Forecasted Values for Test Set (Last 12 Values) 

 
The effectiveness of the DeepDenT model was quantitatively assessed using the Root Mean 

Square Error (RMSE) criterion. This metric is crucial for understanding the accuracy of temperature 
predictions, as it provides a straightforward means of evaluating model performance (Salaudeen et 
al., 2023). In our analysis, the AutoDeepDenT model outperformed traditional forecasting techniques 
and contemporary machine learning methods. The RMSE values for various models, summarized in 
Table 3, offer insight into the comparative effectiveness of each approach. Notably, the 
AutoDeepDenT model achieved the lowest RMSE of 5.191, demonstrating superior forecasting 
accuracy relative to other methods.When compared to the Multilayer Perceptron (MLP) model, which 
recorded the highest RMSE of 5.955, it is evident that AutoDeepDenT not only excels in terms of 
accuracy but also highlights the limitations of MLP in capturing the complexities of temperature data. 
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This superiority can be attributed to the unique architecture of DeepDenT, which incorporates a 
dendritic neuron model that enhances its ability to simulate realistic biological processes, thereby 
improving its predictive performance. Table 3 shows that the methods have an error of around 5°C in 
predicting the maximum temperature of a day. The performance of the models in predicting the 
maximum temperature is similar, but it can be seen that the AutoDeepDenT method provides an 
improvement of between 3% and 14% compared to the other methods.    
 
Table 3. Comparison of Results for Test Data with Different Prediction Methods 

Method Root Mean Square Error (RMSE) 

Linear Regression 5.5767 
Stepwise Linear Regression 5.3676 
Tree (Medium) 5.6799 
Linear SVM 5.5483 
Efficient Linear SVM  5.5767 
Ensemble Boosted Trees 5.3649 
Neural Network (MLP) 5.9553 
AutoDeepDenT 5.1917 

 
The implications of these findings are particularly significant in terms of climate science and 

environmental management. The DeepDenT model's ability to predict maximum temperatures more 
accurately than other models will directly assist policymakers in developing effective policy 
recommendations. As the frequency of sudden changes in weather conditions increases, reliable 
temperature predictions are becoming an indispensable tool for effective disaster risk management, 
agricultural planning, and energy resource allocation. The model's depth and power are evident: 
DeepDenT adapts better to the structure and characteristics of the data compared to other methods, 
thereby performing much better on complex data structures. This is because the model can 
automatically extract features and thus learn important features more effectively. The fundamental 
strength of this deep learning approach is that the model is designed to have more layers and neurons 
than traditional networks. This deep architecture allows it to analyze not only basic patterns but also 
extremely complex and abstract relationships within the data. This advanced and detailed learning 
process ultimately enables the model to develop superior generalization capabilities that can be 
applied to new data with high accuracy. 

 
4. CONCLUSION 
 
 This study successfully predicted maximum temperature data for the province of Giresun using 

DeepDenT, a new deep neural network model. The model's effectiveness and accuracy were 

comprehensively evaluated, confirming that the automatic prediction method yields superior results 

compared to existing neural networks and classical methods. Accurate temperature and drought 

predictions are of vital importance for agricultural regions such as Giresun, especially considering their 

significant role in hazelnut, tea, and kiwi production in Turkey. Furthermore, Giresun's location in the 

Eastern Black Sea region, which receives high rainfall, means it faces a high risk of natural disasters 

such as floods and landslides. Therefore, accurate temperature and precipitation predictions are 

critical for the region, primarily to reduce loss of life and support agricultural production. In recent 

years, rising temperatures caused by climate change have negatively affected many regions, and 

these changes have particularly impacted agricultural production. Therefore, accurate temperature 

forecasts are essential for developing sustainable and appropriate agricultural policies. Accurate 

forecasts enable policymakers to develop the right strategies for sustainable agriculture; for example, 

farmers can be protected by implementing measures such as switching to more resilient crop varieties 

or optimizing irrigation systems. In the Eastern Black Sea region, which is highly susceptible to 

landslides due to high rainfall, the accuracy of meteorological forecasts is critical for taking preventive 

measures before such disasters occur. Landslides cause both loss of life and damage to agricultural 

areas. Maximum temperature forecasts can affect the quality of agricultural products and the supply-

demand balance in the market. Predictable temperature changes allow farmers to better plan their 

crops, reducing economic losses. Furthermore, accurate forecasts can minimize price fluctuations in 

agricultural products. Advanced forecasting systems encourage more effective use of technology in 

agriculture; these applications not only increase productivity but also support the spread of sustainable 

agricultural practices. Future work plans include testing the proposed model with larger datasets in 

different regions and optimizing processing time and costs for real-time forecasts. Overall, the findings 

indicate that maximum temperature predictions can be made more accurately and reliably. The 
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method proposed in this study was applied to maximum temperature data and produced better 

prediction results compared to other machine learning methods. This approach can be extended to 

other fields such as finance, tourism, and health data. 
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