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ABSTRACT

Due to the global ecological crisis, accurate temperature prediction has
become increasingly important, especially for environmental sustainability
worldwide. The main motivation for this research is the increasing
importance of temperature prediction due to the global ecological crisis.
Considering the impacts of climate change and environmental sustainability,
making accurate temperature predictions has become a critical necessity for
the conservation of natural resources and the fight against climate change.
In addition to traditional statistical techniques, the success of deep learning
methods in solving complex relationships has become the focal point of
research in this field. A large number of statistical techniques are used to
predict air temperatures, but deep learning methods have recently become
popular for complex relationships. More layers distinguish Deep Artificial
Neural Networks (DANNs) from traditional Artificial Neural Networks (ANNs).
Since they have multi-layered designs, they perform high-level inference in
data analysis. This research has predicted temperature values using the
Dendritic Neuron Model-Based Explainable Feedback Deep Atrtificial Neural
Network (DeepDenT) architecture. The study consists of 412 monthly
maximum temperature data covering 1991 to 2022 from the Giresun
province. According to the results, the AutoDeepDenT method obtains more
accurate predictions than all other tested models. This highlights the
effectiveness of advanced deep learning techniques in temperature
prediction and their importance for environmental sustainability.
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1. INTRODUCTION

Today, one of the most pressing global issues is climate change, primarily driven by rising
average temperatures and increasing concentrations of greenhouse gases in the atmosphere. The
escalation of air temperatures leads to significant environmental challenges, including climate change
and drought. Accurate predictions of changes in air temperatures are crucial for formulating
sustainable environmental policies and implementing necessary precautions (Fister et al., 2023;
Seager et al., 2019; Doblas-Reyes et al., 2013). In this context, temperature estimates and climate
forecasts, which serve as indicators of global warming, have emerged as vital areas of research.
Climate predictions aim not only to analyze current climate parameters but also to provide insights into
future conditions. The results of these predictions guide policymakers in various domains, such as
agriculture, disaster risk management, and energy planning (Salcedo-Sanz et al., 2024; Pepler et al.,
2015). Air temperature, a fundamental physical variable of the atmosphere, influences not only the
functioning of climate systems but also the vital activities of humans and other living organisms (Tajfar
et al., 2020; Valipour et al., 2020). Furthermore, temperature data play a critical role in accurately
predicting other meteorological variables, such as evaporation, runoff, and solar radiation (Jovic et al.,
2018; Marzo et al., 2017; Tang et al., 2012).

In recent years, methods for forecasting air temperatures have shifted from traditional statistical
models to artificial intelligence-based approaches. Deep Learning (DL), a powerful machine learning
technique, facilitates the extraction of meaningful patterns from complex datasets through the use of
multilayered artificial neural networks (Deng & Yu, 2014). Deep Artificial Neural Networks (DANNSs)
outperform conventional artificial neural networks by incorporating additional hidden layers, thereby
enabling the processing of complex, high-dimensional data and allowing for the extraction of more
abstract features (Schmidhuber, 2015). The learning process typically involves minimizing a loss
function through the backpropagation algorithm (Rumelhart et al., 1987).

In the research conducted by Egrioglu and Bas (2025), a deep learning model derived from the
Dendritic Neuron Model, named AutoDeepDenT, was implemented to forecast monthly temperature
maxima for Giresun province in Turkey. This model was specifically developed for subsequent
applications in other environmental predictive modeling challenges. Unlike conventional deep learning
systems, this model enhances synaptic functions by incorporating additional nerve-like units, thereby
simulating a more realistic dendritic processing. Moreover, the feedback loop is known to improve
accuracy over time due to recurrent learning. As previously mentioned, the motivation for this research
lies in utilizing DeepDenT across different domains with environmental datasets to achieve greater
effectiveness in problem-solving. The current objective is to evaluate the effectiveness of
AutoDeepDenT on the entire temperature dataset to promote broader acceptance of the model.

For this study, data were primarily collected from the Trabzon Meteorology Regional
Directorate, which includes 412 monthly maximum temperature readings spanning from 1991 to 2022.
The estimation process was conducted using an automatic prediction tool developed in MATLAB by
the authors (The MathWorks, 2024). Temperature prediction is critical in areas such as climate
change, agriculture, energy planning, and disaster management. In this context, artificial neural
networks (ANNs) and deep learning-based methods are widely employed. The literature encompasses
studies conducted across various geographical regions, utilizing different data types and time
intervals, thereby revealing the complexity and diversity of the temperature prediction problem. In this
regard, the performance of ANNs and deep learning models has been assessed in terms of hidden
layer configurations and application areas.

Traditional ANNs have long been favored for temperature prediction. Ustaoglu et al. (2008)
tested backpropagation ANN (FFBP), radial basis function (RBF), and generalized regression neural
network (GRNN) models using daily average, maximum, and minimum temperature data from Turkey
between 1989 and 2003. They produced daily temperature forecasts with varying hidden layer
configurations. Similarly, Afzali et al. (2012) developed a single hidden layer (15-neuron) ANN model
using daily and monthly temperature data from Iran between 1961 and 2004, making predictions for
one day and one month ahead. Dombayci and Golcu (2009) utilized a Levenberg-Marquardt algorithm-
based ANN model to generate daily average temperature predictions using monthly, daily, and
previous day’s average temperature data from 2003 to 2006. These studies illustrate that while ANNs
are effective for time series data, their capacity to learn complex patterns is limited due to the restricted
number of layers. In addition to ANN-based models, studies integrating geographic and meteorological
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variables have also gained attention. Bilgili and Sahin (2009) performed monthly temperature
predictions using a multi-layer perceptron (MLP) model that incorporated latitude, longitude, elevation,
and month data from Turkey between 1975 and 2006, utilizing a single hidden layer (32-neuron)
structure. Similarly, Kisi and Shiri (2014) applied a single hidden layer (four neurons) ANN model with
the same variables using data from Iran between 1956 and 2010. Sahin (2012) developed single
hidden layer ANN models with 14 and 24 neurons, leveraging city, month, elevation, latitude,
longitude, and monthly average land surface temperature data from Turkey between 1995 and 2005.
These studies demonstrate that integrating geographical data into temperature prediction models
enhances accuracy.

Deep learning approaches stand out compared to traditional ANNs due to their ability to handle
more complex data structures. Tran et al. (2021) compared traditional ANNs, recurrent neural
networks (RNNs), and long short-term memory (LSTM) models using daily maximum temperature
data from South Korea between 1976 and 2015. They reported that LSTM with 1-20 hidden neurons
and 1-3 hidden layers performed superiorly in predictions ranging from 1 to 15 days ahead. Zhang
and Dong (2020) developed a convolutional recurrent neural network (CRNN) with four past
temperature data maps from China spanning 1952 to 2018, utilizing three convolutional layers, one
LSTM, and one dense layer to predict future temperature maps. These studies indicate that deep
learning models, particularly LSTM and convolutional networks, offer high accuracy for time series
and spatial data. Regional diversity is an important factor in designing temperature prediction models.
De and Debnath (2009) developed a single hidden layer (2 neurons) ANN model using maximum and
minimum temperature data from India between 1901 and 2003, focusing on predicting the monsoon
months (June-August). Another study by Salcedo-Sanz et al. (2016) employed an MLP model using
data on the previous month’s temperature, Southern Oscillation Index (SOI), Indian Ocean Dipole
(IOD), and Pacific Decadal Oscillation (PDO) from Australia and New Zealand between 1900 and 2010
to produce monthly average temperature forecasts. These studies emphasize that regional climate
characteristics and additional meteorological variables enhance model performance.

Among deep learning models, LSTM, CNN, and hybrid architectures are frequently preferred
for time series prediction. Lee et al. (2020) compared MLP (6 hidden layers), LSTM (2 hidden LSTM
+ 3-6 dense layers), and CNN (5 convolutional + 2 dense layers) models using multiple variables such
as temperature, humidity, and solar radiation from South Korea between 2009 and 2018. They noted
that LSTM yielded better results in predicting daily average, minimum, and maximum temperatures.
Kreuzer et al. (2020) tested single and multivariable LSTM and ConvLSTM models with temperature,
humidity, cloud cover, and wind data from Germany between 2009 and 2018, reporting that a
ConvLSTM model with 6 convolutional layers, 2 LSTM layers, and 2 dense layers achieved high
accuracy in 24-hour temperature predictions. Roy (2020) compared MLP (2 layers, 16 neurons), LSTM
(16 hidden neurons), and CNN+LSTM (32 convolution filters+16-neuron LSTM) models using seven-
day meteorological data from New York between 2009 and 2019, highlighting the superior
performance of the CNN+LSTM model for one-day and ten-day predictions. Abhishek et al. (2012)
employed a 5-hidden-layer ANN model using 10 years of historical data to perform daily maximum
temperature predictions in Canada between 1999 and 2009. Bas et al (2024) proposed the dendritic
neuron model artificial neural networks from being affected by the outliers in the data set; a robust
learning algorithm based on Talwar’'s m estimator, median statistics to prevent the effect of outliers in
the inputs, and a new data preprocessing method are used together in a network structure. These
studies underscore the effectiveness of ANN models in multivariable and short-term predictions.

In contrast to the previously mentioned studies, the proposed AutoDeepDenT model offers an
explainable feedback-based deep artificial neural network architecture grounded in a dendritic neuron
model. In this research, AutoDeepDenT was utilized to predict temperatures based on 412 monthly
maximum temperature records from Giresun province between 1991 and 2022. The model achieved
high accuracy in 12-month forecasts when evaluated using the RMSE metric. This study advances
the current literature by introducing AutoDeepDenT as a novel, effective, and explainable Al
framework for accurate temperature prediction.
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2. METHODOLOGY
2.1. Dataset

The dataset used in this study consists of monthly maximum temperature data from Giresun
province located in the Eastern Black Sea Region of Turkiye. Located between the Coastal Mountains
and the Black Sea, Giresun is one of the important cities of Turkiye with agricultural diversity,
characterized by a humid subtropical climate. Agricultural products grown in special climate conditions,
especially hazelnuts, tea and kiwi, are significantly affected by air temperature. Therefore, accurate
modeling of temperature trends in the region is extremely important for agricultural planning and crop
productivity. The dataset used in this study covers the 32-year period between January 1991 and
December 2022 and consists of a total of 412 monthly observations. The data were obtained with
special permission from the Trabzon Meteorological Regional Directorate affiliated to the General
Directorate of State Meteorological Services of Turkiye. Before modeling the data, the dataset was
divided into training, validation and test subsets to ensure a more accurate and objective evaluation
of the forecast performance.

2.2. DeepDenT Automatic Forecasting Method

To forecast the highest monthly temperatures in Giresun province, this study employs the
DeepDenT model, which is a sophisticated deep artificial neural network inspired by the dendritic
neuron model developed by Egrioglu and Bas (2024). One of the key advantages of DeepDenT is its
ability to minimize reliance on subjective opinions, providing predictions that are purely data-driven
and unbiased. The model integrates dendritic cells (DnCs) into its deep feedback artificial neural
network framework. At its core, DeepDenT features an output layer built on a classical fully connected
(FC) layer that uses an additive aggregation function. What sets DeepDenT apart from traditional
neural networks is its partially connected structure, where DnCs are arranged in a sequential and
hierarchical manner. The automatic forecasting method introduced by Egrioglu and Bas (2024)
streamlines the prediction process by removing the need for practitioners to tackle complex technical
details, thus allowing for more efficient forecasting solutions (Egrioglu & Bas, 2024). The architecture
of DeepDenT is illustrated in Figure 1.
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Figure 1. DeepDenT Architecture (Egrioglu & Bas, 2024)

The automatic estimation method used in this study was developed based on the DeepDenT
architecture in Bas and Egrioglu (2025). It was designed to minimize the need for manual intervention,
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allowing users to systematically carry out the modeling process. The method aims to improve
estimation performance through a structure that incorporates steps such as statistical controls,
determination of lag variables, and hyperparameter optimization. The steps of the automatic
estimation method defined are listed below:

Step 1: Determination of Hyperparameter Ranges
O Number of Hidden Layers: Minimum and maximum values are defined.
O Number of Dendritic Cells: The values m,,;, and m,,,, with in each cell.
0 Time Steps: Minimum and maximum values h,,;,, and h,,,
0 Number of Repetitions for Random Initial Weights::n,¢peqs
O Number of Training, Validation, and Test Data Samples:: ny4in, Nyar V€ Nyeg:
O Time Series Period:s
O Bootstrap Repetition Count: n,y,
0 Number of Forecasts: ny

Step 2: The real-time series consisting of a total of n observations, X, = {x;, x,, ..., x,,}, is divided
into three sets: training, validation, and test sets:

train —

Xt - {xlﬂxZ' --"xntrain} (1)
val _ { } 2
Xt xntrain+1’ xntrain+2+' o xntrain"'nval ( )

test _
Xf - {xntrain"'nval"'l’ Xngraintnpar+2+r =1 Xn (3)

Step 3: Stationarity in the time series is checked. If the time series is not stationary, stationarity
is achieved by differencing. First, it is investigated whether there is stationarity arising from
seasonality. If the condition given in Equation (4) is satisfied, seasonal differencing is applied using
Equation (5) to achieve stationarity.

4
1+ 2(ACF, + Y"1 ACF?) “)

n
ze = (1—B%)"x; (5)

|ACF,| > 1.645\/

Subsequently, s represents a seasonality period. After examining non-stationarity related to
seasonality, non-stationarity caused by trends is investigated using unit root tests. The Augmented
Dickey-Fuller test is applied to the time series. If the series contains a unit root, the differencing
process is applied according to Equation (6).

w; = (1 — B)4z, (6)

Step 4: Partial autocorrelation coefficientsry, (k = 1,2, ...,nlag) and the variances of these
coefficients are calculated to determine the confidence intervals for the time series.

1 . ) _
_ mZ?ik"H(xt — %) (Xe—p — X)

Tk = 1 ne s (7)
mztzl (xe — %)
Partial autocorrelation coefficients are calculated using Equation (8).
S T — 2?211 Th-1,jTk—j (8)
ek 1- Z?:Hl Tk—1,j7
The variance of these coefficients is expressed as in Equation (9).
1 9
V() = n + 2V (1) ®)

trn
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Lags corresponding to partial autocorrelation coefficients outside the bounds are determined,
and these lags form the elements of the LagK set. The membership function for theLagK set is defined
by Equation (10) for, k = 1,2, ..., nlag .

,U.Lag[((k) — {1, lf rkk > 2 V(rkk) or rkk < _2 V(Tkk) (10)
: otherwise

Step 5: Validation and test performances are calculated for all possible hyperparameter
combinations(m, q, k). The number of combinations is calculated based on the defined ranges.
Step 5.1: Random initial weights are generated a specific number of n¢pe, times.
Step 5.2: The significant inputs are determined for each random weight set.
Step 5.3: The best validation results obtained with different initial weights are selected.

Step 6: The hyperparameter set with the best performance is determined.

Step 7: The test performance is evaluated for the selected hyperparameter set, and the process
is completed by calculating predictions from the model.

3. RESULTS AND DISCUSSION

In this study, we utilized monthly maximum temperature records from Giresun province
spanning 1991 to 2022 to generate forecasts using the DeepDenT model. The dataset, containing a
total of 412 monthly observations, provides a robust basis for analyzing temperature trends over more
than three decades. The initial and final ten values of the dataset, presented in Table 1, illustrate the
fluctuations in maximum temperatures throughout this period, highlighting both seasonal variations
and potential long-term trends.

Table 1. Dataset (First and Last 10 Values)

City Data Order Year Maximum Temperature
Giresun 1 1991 14.6
Giresun 2 1991 18.8
Giresun 3 1991 22
Giresun 4 1991 26
Giresun 5 1991 30
Giresun 6 1991 26.6
Giresun 7 1991 29
Giresun 8 1991 29.3
Giresun 9 1991 25
Giresun 10 1991 27.2
Giresun 403 2022 31.7
Giresun 404 2022 19.9
Giresun 405 2022 19.7
Giresun 406 2022 21.9
Giresun 407 2022 34.6
Giresun 408 2022 26.5
Giresun 409 2022 29.7
Giresun 410 2022 29.6
Giresun 411 2022 32.2
Giresun 412 2022 32.5

The modelling process involved uploading the dataset to an automatic forecasting application,
where essential parameters were meticulously specified. Given the monthly frequency of the data, we
defined the time series period as 12 months. Each of the training, validation, and test sets was
allocated 12 observations, ensuring a balanced approach to model evaluation. Furthermore, the
configuration of the model was carefully calibrated, with the number of dendritic cells set to 4 and the
forecast horizon determined to be 12 months. The optimal configuration of the DeepDenT model,
identified through rigorous training, included a time step (h) of 1, one hidden layer (q), one dendrite
(m), and a significant lag of 12. This configuration reflects a thoughtful adaptation of the model to the
inherent characteristics of the temperature data. The actual time series values were visualized in
Figure 2, providing a clear representation of the temperature trends over the years. The RMSE value
obtained for in-sample prediction performance when applying the AutoDeepDenT method was 4.0973.
The error metrics obtained for the test set in out-of-sample performance are given in Table 2.

Table 2. Out of Sample Performance of AutoDeepDenT
RMSE MAPE SMAPE MASE REIMAE
7.1492 114.2208 50 0.905943 1.279655
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Additionally, in Figure 3, multi-step forecasts were obtained for out-of-sample performance and
compared with actual values. Following the training of the DeepDenT model, the forecast values were
plotted against the actual values, as shown in Figure 3. This comparison not only illustrates the model's
predictive capabilities but also serves as a visual verification of its performance. Upon examining
Figure 3, it is observed that there is a notable similarity between the actual values (blue line) and the
predicted values (orange line); however, the predicted values fall short of the actual values during
certain periods. Both lines exhibit fluctuations, with significant increases in actual values particularly
noted at the 5th and 10th positions. Overall, while the predicted values trend closely to the actual
values, it is evident that the predictions lag behind, especially at the 3rd and 11th positions. This
situation serves as an important indicator for assessing the predictive success of the model.

40
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Temperature

15

10

LOTITNOMNMOIAIANDODOTITNOMOIINL O — I
O MITUOMNODDONNTOMNDVDOT-ANML ONDO
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Observation

Figure 2. Real Time Series (1991-2022)

Actual Values Versus Predicted Values
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1 2 3 4 5 & 7 8 O 10 11 12
—— e =——Forecasts

Figure 3. Actual Values Versus Forecasted Values for Test Set (Last 12 Values)

The effectiveness of the DeepDenT model was quantitatively assessed using the Root Mean
Square Error (RMSE) criterion. This metric is crucial for understanding the accuracy of temperature
predictions, as it provides a straightforward means of evaluating model performance (Salaudeen et
al., 2023). In our analysis, the AutoDeepDenT model outperformed traditional forecasting techniques
and contemporary machine learning methods. The RMSE values for various models, summarized in
Table 3, offer insight into the comparative effectiveness of each approach. Notably, the
AutoDeepDenT model achieved the lowest RMSE of 5.191, demonstrating superior forecasting
accuracy relative to other methods.When compared to the Multilayer Perceptron (MLP) model, which
recorded the highest RMSE of 5.955, it is evident that AutoDeepDenT not only excels in terms of
accuracy but also highlights the limitations of MLP in capturing the complexities of temperature data.
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This superiority can be attributed to the unique architecture of DeepDenT, which incorporates a
dendritic neuron model that enhances its ability to simulate realistic biological processes, thereby
improving its predictive performance. Table 3 shows that the methods have an error of around 5°C in
predicting the maximum temperature of a day. The performance of the models in predicting the
maximum temperature is similar, but it can be seen that the AutoDeepDenT method provides an
improvement of between 3% and 14% compared to the other methods.

Table 3. Comparison of Results for Test Data with Different Prediction Methods

Method Root Mean Square Error (RMSE)
Linear Regression 5.5767
Stepwise Linear Regression 5.3676
Tree (Medium) 5.6799
Linear SVM 5.5483
Efficient Linear SVM 5.5767
Ensemble Boosted Trees 5.3649
Neural Network (MLP) 5.9553
AutoDeepDenT 5.1917

The implications of these findings are particularly significant in terms of climate science and
environmental management. The DeepDenT model's ability to predict maximum temperatures more
accurately than other models will directly assist policymakers in developing effective policy
recommendations. As the frequency of sudden changes in weather conditions increases, reliable
temperature predictions are becoming an indispensable tool for effective disaster risk management,
agricultural planning, and energy resource allocation. The model's depth and power are evident:
DeepDenT adapts better to the structure and characteristics of the data compared to other methods,
thereby performing much better on complex data structures. This is because the model can
automatically extract features and thus learn important features more effectively. The fundamental
strength of this deep learning approach is that the model is designed to have more layers and neurons
than traditional networks. This deep architecture allows it to analyze not only basic patterns but also
extremely complex and abstract relationships within the data. This advanced and detailed learning
process ultimately enables the model to develop superior generalization capabilities that can be
applied to new data with high accuracy.

4, CONCLUSION

This study successfully predicted maximum temperature data for the province of Giresun using
DeepDenT, a new deep neural network model. The model's effectiveness and accuracy were
comprehensively evaluated, confirming that the automatic prediction method yields superior results
compared to existing neural networks and classical methods. Accurate temperature and drought
predictions are of vital importance for agricultural regions such as Giresun, especially considering their
significant role in hazelnut, tea, and kiwi production in Turkey. Furthermore, Giresun's location in the
Eastern Black Sea region, which receives high rainfall, means it faces a high risk of natural disasters
such as floods and landslides. Therefore, accurate temperature and precipitation predictions are
critical for the region, primarily to reduce loss of life and support agricultural production. In recent
years, rising temperatures caused by climate change have negatively affected many regions, and
these changes have particularly impacted agricultural production. Therefore, accurate temperature
forecasts are essential for developing sustainable and appropriate agricultural policies. Accurate
forecasts enable policymakers to develop the right strategies for sustainable agriculture; for example,
farmers can be protected by implementing measures such as switching to more resilient crop varieties
or optimizing irrigation systems. In the Eastern Black Sea region, which is highly susceptible to
landslides due to high rainfall, the accuracy of meteorological forecasts is critical for taking preventive
measures before such disasters occur. Landslides cause both loss of life and damage to agricultural
areas. Maximum temperature forecasts can affect the quality of agricultural products and the supply-
demand balance in the market. Predictable temperature changes allow farmers to better plan their
crops, reducing economic losses. Furthermore, accurate forecasts can minimize price fluctuations in
agricultural products. Advanced forecasting systems encourage more effective use of technology in
agriculture; these applications not only increase productivity but also support the spread of sustainable
agricultural practices. Future work plans include testing the proposed model with larger datasets in
different regions and optimizing processing time and costs for real-time forecasts. Overall, the findings
indicate that maximum temperature predictions can be made more accurately and reliably. The
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method proposed in this study was applied to maximum temperature data and produced better
prediction results compared to other machine learning methods. This approach can be extended to
other fields such as finance, tourism, and health data.
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