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ABSTRACT 
 
Optimization is a critical step in metabolomics workflows to ensure reliable 
data, particularly when handling large sample numbers. In this study, 
optimization was carried out for Piper sarmentosum Roxb., a medicinal herb 
of regional importance, to establish standardized procedures for NMR-based 
metabolomic analysis and sample collection. Extraction conditions were 
evaluated using different sample masses, with 75 mg of freeze-dried 
material providing the best signal intensity, particularly in the aromatic 
region. Several NOESY-based NMR parameter sets were then compared, 
and the settings adapted from Halabalaki et al. (2014) produced the highest 
spectral quality and were adopted for further analyses. Following 
optimization, the influence of leaf maturity and harvesting time on metabolite 
composition was assessed using 1D NOESY NMR spectroscopy. Partial 
least square discriminant analysis (PLS-DA) revealed clear metabolic 
distinctions between young and mature leaves, while samples collected in 
the morning and afternoon showed no notable differences, indicating that 
sampling time had minimal impact on metabolite composition. The optimized 
protocols established in this work minimize technical variability, enhance 
spectral reproducibility, and improve metabolite detectability. These 
outcomes provide a robust platform for large-scale metabolomics 
investigations of P. sarmentosum and other medicinal plants. 
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1. INTRODUCTION  
 

The genus Piper (Piperaceae) represents one of the most diverse and chemically rich groups 
of tropical plants, comprising more than 2,000 species distributed across Southeast Asia, South 
America, and the Pacific regions. These species range from aromatic shrubs to woody vines and are 
well known for their ethnomedicinal, culinary, and economic importance (Salleh et al., 2015). In many 
traditional healing systems, Piper plants have long been used to treat ailments such as inflammation, 
digestive disorders, pain, infections, and respiratory conditions, highlighting their deep cultural 
significance and broad therapeutic relevance (Salleh, 2020). Chemically, Piper species are renowned 
for producing complex secondary metabolites, including amides, alkaloids, flavonoids, lignans, 
terpenoids, and essential oils. These phytochemicals underpin a wide spectrum of bioactivities, 
including antibacterial, antifungal, antioxidant, cytotoxic, anti-inflammatory, anticholinesterase, and 
enzyme inhibition properties, making the genus a valuable target for ongoing natural product research 
(Salleh et al., 2019). 

Piper sarmentosum Roxb. (Figure 1) is a well-recognized traditional medicinal plant in 
Southeast Asia and China (Mathew et al., 2004). Traditionally, P. sarmentosum has been used as a 
natural remedy with a wide range of claimed therapeutic properties, including anticancer, anti-
osteoporotic, antibacterial, antioxidant, antihypertensive, anti-inflammatory, and antidiabetic effects 
(Azlina et al., 2019; Mohamad Asri et al., 2020; Suwannasom et al., 2022; Anjur et al., 2022; Ibrahim 
et al., 2020; Azmi et al., 2021 and Hematpoor et al., 2018). Its therapeutic potential has been linked 
to a diverse array of bioactive metabolites, including alkaloids, amides, flavonoids, and 
phenylpropanoids (Adib et al., 2023). The growing global demand for traditional medicines has raised 
concerns over product quality, safety, and authenticity, especially with issues of counterfeiting and 
inconsistency. Reliable analytical methods are needed to authenticate products and assess their 
chemical composition, as efficacy depends on trace levels of bioactive metabolites. Metabolomics 
offers a comprehensive approach for characterizing the chemical composition of plant species by 
profiling a broad range of metabolite. Advances in high-field NMR and mass spectrometry now enable 
precise metabolomic profiling, generating consistent chemical fingerprints that support 
standardization, batch reproducibility, and quality control in plant-based medicines (Lee et al, 2017; 
Xiao et al. 2022). Metabolic profiling of P. sarmentosum is therefore an important approach for 
characterizing its phytochemical composition and supporting standardization efforts in herbal 
research. 
 NMR spectroscopy provides several distinct advantages over other metabolomic platforms. It 
is non-destructive, inherently quantitative, and requires minimal sample preparation without chemical 
derivatization (Markley et al., 2017; Edison et al., 2021). In addition, NMR is highly reliable for the 
identification of novel compounds and offers excellent reproducibility and automation potential, making 
high-throughput metabolomic analyses more feasible compared to LC-MS or GC-MS. However, the 
quality of spectral data is highly dependent on the choice of acquisition parameters. Without 
optimization, sensitivity and resolution may be insufficient to capture relevant metabolites, particularly 
in studies with large sample sets. Metabolomics studies require carefully designed experiments to 
ensure reproducibility and reliability of the data. Factors such as plant growth conditions, 
randomization, replication, and analytical quality control must be considered, along with sample 
preparation variables including tissue type, maturity stage, time of harvest, and quenching methods 
(Ocampos et al., 2024). Because metabolite concentrations are highly dynamic and influenced by both 
developmental and environmental conditions, inconsistent sampling can introduce significant 
variability and confound data interpretation (Li et al., 2020). Standardization of harvesting conditions 
such as selecting uniform leaf maturity and collecting samples at the same time of day has been 
recommended to reduce bias and enhance comparability (Zhao et al., 2022). 
 The NOESY (Nuclear Overhauser Effect Spectroscopy) experiment is commonly employed in 
NMR-based metabolomics for efficient water suppression (Nagana et al., 2021; Zhuoma et al, 2025). 
It exploits through-space dipolar interactions between protons, enabling selective attenuation of the 
water resonance while preserving metabolite signals (Kim et al., 2010).  In this study, 1D NOESY NMR 
parameters were optimized to enhance data quality, and the effects of leaf maturity and sampling time 
on the metabolite profiles of P. sarmentosum were investigated. These optimizations ensured 
consistent sample quality, minimized technical variability, and improved data reliability. The 
methodology established here provides a solid foundation for subsequent large-scale profiling, where 
high throughput and reproducibility are essential. 
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Figure 1. Photographs of P. sarmentosum at Forest Research Institute Malaysia; (A) mature and young leaves; (B) fruits 

 
2. METHODOLOGY 
 
2.1. Solvents and Chemicals 
 
 Deuterium oxide (D, 99.9%) and methanol-D4 (D, 99.8%) were purchased from Cambridge 
Isotope Laboratories, USA. Sodium deuteroxide solution (NaOD) (40wt, % in D2O (D, 99.5%) and 3-
(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TMSP) (D, 98.0 %) were purchased from Aldrich, 
USA. Meanwhile pottasium dihydrogen phosphate was from Merck, USA. 
 
2.2. Plant Samples 
 
 P. sarmentosum samples were identified by a botanist at Forest Research Institute of Malaysia 
(FRIM). Leaf samples of P. sarmentosum were collected from the FRIM nursery in Kepong, consisting 
of both mature and young leaves at two time points (8:00 a.m. (shaded) and 1:30 p.m. (sunny)). 
Immediately after harvesting, samples were quenched in liquid nitrogen, ground using a cryo-mill, 
freeze-dried, and stored at -80 °C until further use (Kim et al., 2010). Herbarium samples were kept at 
FRIM. 
 
2.3. Optimization of Sample Mass for NMR Analysis 
 
 An optimization was carried out using three different sample masses (25, 50, and 75 mg) of 
freeze-dried material to determine the appropriate amount for NMR analysis. The preparation method 
followed Kasim et al. (2022) with slight modification. Briefly, 75 mg of freeze-dried material were 
transferred into a microcentrifuge tube, and 1.0 mL of CH₃OH-d₄ was added. The mixture was 
vortexed for 2.0 min and sonicated for 20.0 min, followed by centrifugation at 13 000 rpm for 5.0 min 
at room temperature. The supernatant (500.0 μL) was transferred into a 2.0 mL microcentrifuge tube 
and mixed with 250.0 μL of KH₂PO₄ buffer (pH 6.0) containing 0.1% trimethylsilyl propionic acid 
sodium salt (w/v). The mixture was kept at 4.0 °C for 30.0 min, then centrifuged at 6 000 rpm for 5.0 
min. The resulting supernatant (600.0 μL) was carefully transferred into a 5.0 mm NMR tube (DURAN® 
178 × 4.95 mm) for analysis. 
 
2.4. Optimization of 1D-NOESY NMR Acquisition Parameters for Metabolomic Analysis 
 
 For NMR-based metabolomics, NOESY 1D-NMR spectra were recorded at 300.0 K (26.85 °C) 
on a Bruker AVANCE 600 MHz spectrometer equipped with a CryoProbe™ operating at a frequency 
of 600.21 MHz. CH₃OH-d₄ was used as the internal lock. Four acquisition parameter sets previously 
applied in plant metabolomics studies were tested to determine suitable conditions. The parameters 
varied during optimization were the number of scans (NS), relaxation delay, and acquisition time, while 
the spectral width (SW) and mixing time were kept constant: 
(i) NS= 64, relaxation delay= 1.0 s, acquisition time= 3.666 s, mixing time= 0.01 s, SW = 20 ppm 

(Abdul Hamid et al., 2017) 
(ii) (NS= 64, relaxation delay= 2.0 s, acquisition time= 2.045 s, mixing time= 0.01 s, SW= 20 ppm 

(Abd Ghafar et al., 2020) 
(iii) NS= 64, relaxation delay= 4.0 s, acquisition time= 3.98 s, mixing time= 0.01 s, SW= 20 ppm 

(Halabalaki et al., 2014) 

(A) (B) 
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(iv) NS= 128, relaxation delay= 4.0 s, acquisition time= 3.98 s, mixing time= 0.01 s, SW = 20 ppm 
(Halabalaki et al., 2014) 

 A presaturation sequence was used to suppress the residual H₂O frequency during the recycle 
delay. Free induction decays (FIDs) were Fourier transformed with a line broadening of 0.3 Hz and 
zero-filled to 32.0 K points. The resulting spectra were manually phased, baseline-corrected, and 
calibrated to TSP at 0.0 ppm using TopSpin (version 4.3.0, Bruker). Subsequently, to study the effects 
of developmental stage and sampling time on metabolite composition, the following parameters were 
applied: NS= 128, relaxation delay= 4.0 s, acquisition time= 3.98 s, mixing time= 0.01 s, and spectral 
width (SW)= 20 ppm (Halabalaki et al., 2014). 
 
2.5. NMR Data Processing for Metabolomics Analysis 
 

The FID data of NOESY 1D-NMR experiment were converted into ASCII file using NMR Assure 
Bruker software (v. 1.0, Swiss). Spectral intensities were scaled to the TSP signal and reduced to 
integrated regions of 0.01 ppm width, yielding 829 bins per NMR spectrum. The region from 3.15 to 
4.1 ppm was excluded to eliminate interference from residual water and solvents. The averaged 
binned integral of the NOESY 1D-NMR data were then subjected to multivariate data analysis. Partial 
Least Squares Discriminant Analysis (PLS-DA) was performed with the SIMCA-P software (v. 13.0.3, 
Umetrics, Umea, Sweden). A hierarchical clustering heatmap was developed using MetaboAnalyst 
(version 6.0) to visualize variations in metabolite profiles according to leaf maturity and sampling time. 
 
3. RESULTS AND DISCUSSION  
 
3.1. Optimization of Sample Mass 
 

In metabolomics, extraction is a crucial step that determines the quality and representativeness 
of the metabolic profile obtained. An efficient extraction must maximize metabolite recovery while 
minimizing degradation or selective loss of compounds. Therefore, careful optimization of the 
extraction procedure is essential to ensure reliable, reproducible, and comprehensive metabolite 
coverage (Kaiser et al., 2009; Martin et al., 2015). Methanol is widely preferred due to its intermediate 
polarity, enabling extraction of both polar and semi-polar metabolites for a comprehensive profile. 
Chloroform, though effective for nonpolar compounds such as lipids and terpenoids, often co-extracts 
excessive lipids that can mask signals in NMR. Meanwhile, water is suitable for hydrophilic metabolites 
like sugars, organic acids, and amino acids, but fails to extract semi-polar and nonpolar metabolites, 
excluding key groups such as alkaloids and flavonoids that are important in P. sarmentosum (Adib et 
al., 2024). Methanol thus provides a balanced extraction, recovering sugars, amino acids, organic 
acids, phenolics, alkaloids, and flavonoids, making it suitable for NMR profiling of P. sarmentosum in 
this study.  

 

 
Figure 2. 1D NOESY NMR spectra of P. sarmentosum leaves extracts using different sample weights 
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Optimization of sample mass was first carried out using three amounts: 25 mg, 50 mg, and 75 
mg of freeze-dried material dissolved in MeOD. This step was performed to determine the optimal 
sample quantity that would yield sufficient signal intensity for reliable metabolite detection. The 
resulting NMR spectra showed that 75 mg produced the highest signal intensity, particularly in the 5-
8 ppm region where many aromatics and olefinic metabolites resonate (Figure 2). These metabolites 
are often critical in metabolomics studies, and the higher sample mass ensured greater metabolite 
concentration in the NMR tube, resulting in improved signal-to-noise ratios, enhanced detection of 
low-abundance compounds, and more reliable spectral interpretation. 
 
3.2. Optimization of NMR Parameters for Metabolic Analysis 
 
 In addition to sample mass, experimental parameters for the 1D NOESY experiment were 
optimized to achieve consistent spectral quality across all samples. Key acquisition parameters such 
as number of scans (NS), relaxation delay, acquisition time, mixing time, and spectral width are known 
to strongly influence sensitivity and reproducibility (Wu et al., 2014). Four parameter sets previously 
applied in plant metabolomics studies were tested (Figure 3): (i) NS= 64, relaxation delay= 1.0 s, 
acquisition time= 3.666 s, mixing time= 0.01 s, SW= 20 ppm (Abdul Hamid et al., 2017); (ii) NS= 64, 
relaxation delay= 2.0 s, acquisition time= 2.045 s, mixing time= 0.01 s, SW= 20 ppm (Abd Ghafar et 
al., 2020); (iii) NS= 64, relaxation delay= 4.0 s, acquisition time= 3.98 s, mixing time= 0.01 s, SW= 20 
ppm (Halabalaki et al., 2014) and (iv) NS= 128, relaxation dela = 4.0 s, acquisition time= 3.98 s, mixing 
time= 0.01 s, SW= 20 ppm (Halabalaki et al., 2014).  Among these, the parameters adapted from 
Halabalaki et al. (2014) produced the strongest signals in the phenolic region. The region between 5-
8 ppm often includes signals from aromatic and olefinic compounds, which are critical for 
metabolomics analysis. The higher mass ensures a greater concentration of metabolites in the NMR 
tube, enhancing signal-to-noise ratios and improving the detectability of metabolites, thereby enabling 
more reliable spectral interpretation and metabolite identification. 
 

 
Figure 3. NOESY 1H NMR of P. sarmentosum leaves using different parameters 

 
3.3. Effect of Developmental Stage and Sampling Time on NMR-Based Metabolite 

Composition 
 

Plant metabolomics analysis involves several critical steps, including experimental design, plant 
growth management, harvesting, sample preparation, metabolite extraction, instrumental analysis, 
data preprocessing, and statistical evaluation (Ocampos et al., 2024). Careful planning of each stage 
is essential to ensure reproducibility, accuracy, and meaningful interpretation of data. In particular, 
harvesting is a crucial step, as variations in tissue type, developmental stage, and time of collection 
can affect metabolite profiles. In this study, the NMR profiles of mature and young P. sarmentosum 
leaves showed clear differences (Figure 4).  
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Figure 4. Representative ¹H NMR spectra of Piper sarmentosum mature and young leaves sampled at different time, showing 
clear differences in metabolite profiles, with mature leaves exhibiting higher signal intensities compared to young leaves 

 
In general, the 1H-NMR spectra of plant extracts can be categorized into three regions: the 

organic acid and amino acid region (0.00-3.00 ppm), the carbohydrate/glucose region (3.01-5.00 
ppm), and the aromatic region (6.00-8.00 ppm) (Kim et al., 2010). These 1H-NMR spectra are 
considered fingerprint spectra because there are no samples with identical 1H-NMR spectra. Mature 
leaves exhibited higher signal intensities and more prominent peaks, reflecting greater accumulation 
of secondary metabolites such as flavonoids, amides, and phenylpropanoids. In contrast, young 
leaves displayed weaker spectra, consistent with their prioritization of primary metabolism to support 
growth. These differences highlight the strong influence of developmental stage on metabolite 
composition and emphasize the need to standardize leaf maturity for metabolomics investigations. 
Meanwhile, the samples of the same maturity but collected at different times showed no observable 
differences in their NMR spectra. 

Direct visual inspection of spectra is often limited by overlapping peaks and subtle intensity 
differences across samples, making it difficult to identify systematic variation by simple observation. 
To further evaluate the effects of leaves maturity and sampling time on the metabolic profiles of 
P.sarmentosum, Partial Least Squares Discriminant Analysis (PLS-DA) was applied to the NMR 
dataset (Figure 5A). Multivariate data analysis such as PLS-DA enables the extraction of meaningful 
patterns from large spectral datasets by reducing dimensionality and emphasizing group-related 
variance. As a supervised multivariate method, PLS-DA uses prior class information to maximize 
separation spectral variables that contribute most to discrimination. This approach helps to uncover 
relationships between samples and highlight metabolites responsible for group differentiation 
(Kalivodová et al., 2015). The score plots showed that both maturity stage significantly influenced 
metabolite profiles. Mature leaves clustered on the positive side of PC1, while young leaves were 
separated on the negative side, reflecting clear metabolic differences between developmental stages. 
The PLS-DA model yielded values of R²X = 0.746, R²Y = 0.783, and Q² = 0.508, with PC1 and PC2 
together explaining 71.2% of the total variation in the dataset. R²X represents the proportion of 
variance in the X-matrix (NMR spectral data) that is explained by the model, while R²Y reflects how 
well the model explains the separation between predefined sample groups. Q² indicates the predictive 
reliability of the model as determined by cross-validation. Collectively, these values suggest that the 
model provides a good description of the data with moderate predictive power. 

The loading line plot from the PLS-DA model indicated distinct NMR chemical shift regions that 
contributed to the separation between mature and young P. sarmentosum samples (Figure 5B). Peaks 
located further from the baseline reflected stronger discriminatory power, and when combined with the 
variable importance in projection (VIP) scores, several chemical shifts were highlighted as significant 
contributors (VIP > 1.0) (Kasim et al., 2022). The most prominent signals included δ 1.52 (VIP 5.51), 
δ 5.44 (VIP 4.58), δ 2.88 (VIP 3.65), δ 4.20 (VIP 3.63), δ 4.16 (VIP 2.87), δ 6.84 (VIP 2.71), δ 6.80 
(VIP 2.58), δ 6.68 (VIP 2.35), and δ 5.92 (VIP 2.16). Additional discriminant peaks were observed at 
δ 4.96 (VIP 1.70), δ 1.36 (VIP 1.92), δ 1.32 (VIP 1.75), δ 4.60 (VIP 1.50), and δ 5.20 (VIP 1.39). These 
values indicate that both high- and low-field regions of the spectrum contributed to class separation, 
suggesting that multiple metabolite classes underlie the observed maturity differences. The PLS-DA 
column loading plot (Figure 5C) illustrates metabolites with higher loading values exhibited stronger 

Young, morning

Young, afternoon

Mature, morning

Mature, afternoon
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influence on group separation, with positive loadings corresponding to compounds more abundant in 
mature leaves and negative loadings representing those enriched in young leaves. This suggests that 
mature leaves contained a higher abundance of metabolites responsible for group differentiation. 

At this stage, the exact metabolites corresponding to these discriminant peaks could not yet be 
identified. However, the chemical shift regions already provide a preliminary picture of the metabolite 
groups involved. Signals between δ 6.6-7.0 ppm (δ 6.84, 6.80, 6.72, and 6.68) correspond to aromatic 
protons, due to phenolic, alkaloids or flavonoid derivatives. Peaks in the δ 4.0-5.5 ppm region (δ 5.44, 
4.96, 4.20, 4.16, and 5.20) are commonly assigned to carbohydrate or glycosidic protons, suggesting 
the involvement of sugars or glycosylated secondary metabolites. The strong signal at δ 2.88 ppm 
may reflect methylene groups adjacent to electronegative atoms, while the aliphatic signals at δ 1.52, 
1.36, and 1.32 ppm could be related to fatty acids, terpenoids, or other aliphatic components. Similar 
stage-dependent patterns have been reported in other medicinal plants, including Andrographis 
paniculata, where young and mature leaves showed distinct metabolite profiles (Tajidin et al., 2019). 
Comparable variations were also observed across growth stages in Peganum harmala (Li et al., 2018) 
and Cynomorium songaricum (Xue et al., 2020). Together, these studies reinforce the present findings 
that leaf maturity strongly affects metabolite composition, highlighting the importance of standardizing 
developmental stage in metabolomics investigations. 

For comparison of sampling times, samples were collected only in the morning and afternoon 
to represent two contrasting environmental conditions. The morning period reflected cooler, shaded 
conditions, while the afternoon represented warmer, high-light exposure without overextending the 
sampling schedule. These two time points were selected to capture potential diurnal variation in 
metabolite composition while maintaining consistency in post-harvest processing. Since each sample 
required immediate handling steps such as surface cleaning, cutting, cryo-milling, and storage under 
controlled conditions, increasing the number of collection times would have prolonged the processing 
period and introduced unwanted variability. Limiting sampling to two key time points ensured 
experimental consistency.  

 

 
Figure 5. (A) PLS-DA score plot showing the effects of maturity stage and sampling time on P. sarmentosum metabolite profiles. 
(B) Loading line plot and (C) Column loading plot indicating metabolites contributing to the separation between mature and 
young samples 
 

A hierarchical clustering heatmap was constructed to visualise the variation in metabolite 
profiles according to leaf maturity and harvesting time (Figure 6). Samples collected in the morning 
(8:00 a.m.; 26-27 °C, shaded conditions) and those harvested in the afternoon (1:30 p.m.; 30-31 °C, 
sunny conditions) showed no clear separation within the same maturity group. The clustering pattern 
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revealed a distinct separation between mature and young leaves, indicating that maturity was the 
major factor influencing the metabolite composition, while harvesting time had minimal effect. The 
colour gradient from red to blue represents relatively higher and lower metabolite intensities, 
respectively. Overall, these findings indicate that samples can be collected at either time of day, as 
the sampling time had minimal influence on metabolite composition compared to leaf maturity. 
 

 
Figure 6. Heatmap visualization of NMR-derived metabolite variation between maturity stages and sampling time 

 
4. CONCLUSION  
 

Optimization of sample mass and NMR acquisition parameters enhanced spectral quality and 
ensured reliable metabolite detection. This study also demonstrated that while leaf maturity 
significantly influenced the metabolite profile of Piper sarmentosum, sampling time had minimal effect. 
Therefore, samples can be collected either in the morning or afternoon without substantial impact on 
metabolite composition. Together, these findings establish a framework for standardized NMR-based 
metabolomic analysis of Piper sarmentosum, providing greater consistency and reproducibility for 
future studies. 
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