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Abstract

An implicit exponentially fitted hybrid method is developed for solving special second 
order initial value problems. The coefficients of the new method are functions of step-size 
and the frequency of the problems. The stability region of the method is given. Numerical 
comparisons on several problems with exponential solutions demonstrate that the new 
method gives better accuracy compared to the existing method.
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Abstrak

Satu kaedah penyuaian eksponen hibrid tersirat dibangunkan untuk menyelesaikan 
masalah nilai awal khas peringkat kedua. Pekali bagi kaedah ini adalah fungsi saiz langkah 
dan frekuensi bagi masalah. Rantau kestabilan bagi kaedah ini diberikan. Perbandingan 
berangka pada beberapa masalah dengan penyelesaian eksponen menunjukkan bahawa 
kaedah baharu memberikan ketepatan yang lebih baik dari kaedah yang sedia ada.

Kata kunci   kaedah hibrid, penyuaian eksponen, masalah nilai awal peringkat kedua, 
penyelesaian berangka

Introduction

The purpose of this paper is to develop a numerical method for the solution of special 
second order initial value problems (IVPs)

0000 )(,)()),(,()( yxyyxyxyxfxy =′=′=′′ 		             1

having exponential solutions. Some authors reduce the second order problems to first order 
systems of twice dimensions and then solve them using numerical methods designed for 
first order ordinary differential equations such as in D'Ambrosio and Paternoster (2014). 
Nevertheless, the development of numerical methods for directly solving these problems 
is naturally more efficient. To directly solve the second order problems, many papers have 
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been published proposing Runge Kutta Nystrom methods, block methods and multistep 
methods, see for example Dormand et al. (1987); Fatunla (1990); Lambert and Watson 
(1976) and Franco (2004). Authors such as Hairer (1979), Cash (1981), Chawla et al. 
(1986), Fatunla et al. (1999) and Tsitouras (2006) proposed hybrid methods using the ideas 
underlying the Runge Kutta and multistep methods. In general, the numerical methods 
are categorized into two classes: 1) Methods with constant coefficients, 2) Methods with 
variable coefficients. Methods with variable coefficients are useful when accuracy is 
required in the implementation because the methods are specially adapted to the solutions 
or to the structure of the problem. In this research, an implicit exponentially fitted hybrid 
method with variable coefficients is derived. The coefficients of this method are functions 
of step-size and the frequency of the problem. The accuracy of the new method is measured 
and compared to the existing method when applied to some problems having exponential 
solutions.

In this paper, the following class of hybrid methods is considered:
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This class of methods has been investigated by Coleman (2003) and can be represented by 
the Butcher tableau

c A

bT

where A = [aij], b
T = [b1, b2,…, bs] and cT = [c1, c2,…, cs]. The leading term associated with 

the local truncation error of a p-th-order hybrid method is given by
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where T2, α(ti), t(ti) and ψ "( )ti  are as defined in Coleman (2003). The quantity
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where 2+pn  is the number of trees of order p + 2, is called the error constant for the p-th 
order method. In the following sections, we describe the stability analysis for methods 
with constant and variable coefficients. Then, we derive the exponentially fitted hybrid 
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method. The new method is applied to several second-order problems to provide numerical 
comparisons with the existing method.

Stability Analysis

Methods with constant coefficients

Analysis stability of the methods with constant coefficients is based on the following 
standard test problem

0,)( 2 >−=′′ λλ yxy 			              2

whose solution is y x c e c ei x i x( ) = ++ −
−λ λ  where +c  and −c  are constants. If the hybrid 

methods [1] solve equation [2], then we will have
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where H = λh. The above formula in vector form expression is given as

Y (e c AY= + − −−)y cy Hn n 1
2 			            3.1

YbT2
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where e = (1, 1, …, 1)T and Y = (Y1, Y2, …, Ys)
T . Solving for Y from equation [3.1] and 

substituting it into [3.2] gives

0)()( 1
22

1 =+− −+ nnn yHPyHSy

where )()(2)( 1222 ceAIb ++−= −HHHS T  and cAIb 1222 )(1)( −+−= HHHP T . The 
characteristic equation determining the numerical solution of [2] is given by

0)()( 222 =+− HPHS ζζ 			              4

The hybrid methods corresponding to the characteristic equation [4] is said to have the 
interval of stability (0, Ha) if 1)( 2 <HP  and )(1)( 22 HPHS +<  for all H d (0, Ha). If 

1)( 2 =HP  and 2)( 2 <HS  for all H d (0, Hp) then the (0, Hp) is called the interval of 
periodicity of the hybrid methods.
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Methods with variable coefficients

If the hybrid methods defined in [1] have coefficients as a function of one frequency and a 
step-size, then the interval of stability becomes stability region for one parameter family of 
methods. Following the stability concept given by Coleman and Ixaru (1996), for exponentially 
fitted hybrid methods corresponding to the characteristic equation [4], the stability region W 
is a region of the H-v plane such that 1),( 2 <vHP  and ),(1),( 22 vHPvHS +< .

Derivation of the new method

In this section, we derive a fifth-order diagonally implicit hybrid method with four stages. 
Then, based on this method, an exponentially fitted hybrid method will be developed. The 
table of coefficients for the fifth-order diagonally implicit hybrid method is given by

0	 0	 0	 0	 0

1	 a21	 γ	 0	 0

c3	 a31	 a32	 γ	 0

c4	 a41	 a42	 a43	 γ

	 b1	 b2	 b3	 b4

This method has an algebraic order five and must satisfy the order conditions given in 
Coleman (2003). Imposing the free parameters to nullify the dissipation error and to 
minimize the error constant, we obtain 

The diagonally implicit hybrid method is zero dissipative and has phase-lag of order 6. The 
interval of periodicity is (0, 4.47) and the error constant is E = 2.55×10-2 .
Now, we derive the exponentially fitted hybrid method. Assume that Yi ≈ y(x + cih). 
Associating each stage formula in [1] with the linear operator L, we have:
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According to Raptis and Allison (1978), the linear operator L is said to integrate exactly the 
function y(x) if L[h, a] y(x) = 0. In order to derive the new method, firstly we set γ as free 
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parameters a22, a33, a44 while other coefficients the same as the diagonally implicit hybrid 
method derived earlier. Secondly, we impose L1 to integrate exactly y x ewx( ) =  to obtain 
a22, a33 and a44 . Here, a22, a33 and a44 are different functions of v = wh. Lastly, we impose L2 
to integrate exactly y x ewx( ) =  and y x e wx( ) = − , then solve for bi (i = 1, … 4) the resulting 
equations together with the following equations

b1 + b2 + b3 + b4 = 1

b1c1 + b2c2 + b3c3 + b4c4 = 0

For small v, the coefficients are subject to heavy cancellations. Therefore, for convenience, 
the following Taylor series expansions are used: 
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The stability region for this method is depicted in Figure 1. This shows the usefulness of 
the new method.

Figure 1   Stability region for the implicit exponentially fitted hybrid method

Numerical examples and discussions

The new method has been applied to several second order problems with exponential 
solutions to provide numerical evidence of the effectiveness of our method compared to 
the results of the existing method. Below are the abbreviations of the codes:

EIMH: Implicit exponentially fitted hybrid method with four stages derived in this paper.
FRANCO: Exponentially fitted explicit Runge-Kutta-Nystrom method with four stages 
derived by Franco (2004).

The numerical results are based on maximum global errors produced by each method for 

various step-sizes h =
 

k2
1 . The maximum global error and its notation are given by

Maximum global error = max (||y(xn) – yn||)
Notation: for example 1.5556E-06 means 1.5556 × 10-6

Here, y(xn) and yn are the exact solution and the numerical solution respectively. Tables 1 to 
3 show the maximum global errors of the methods for solving each problem.
The test problems used are as follows.
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Problem 1

′′ = = ′ = − > ∈[ ]y y y y xλ λ λ2 0 1 0 0 0 1, ( ) , ( ) , , ,

Solution: y x x( ) )= −exp( λ
For λ = 5, v = -5h for EIMH and FRANCO. For λ = 10, v = -10h for EIMH and FRANCO 
codes.

Problem 2

′′ = + − = ′ = − ∈[ ]y y x y y x1 0 2 0 2 0 5, ( ) , ( ) , ,

Solution:  y(x) = 1 – x + exp(-x). The value v = wh for EIMH and FRANCO codes is v = -h. 

Problem 3

′′ + − −( )  = = ′ = − ∈[ ]y v y x y y y x2 3 2 0 1 0 0 5exp , ( ) , ( ) , ,λ λ λ

Solution: y(x)= exp(-λ x). Choose v = 0.1, λ = 0.5. The value v = wh for EIMH and FRANCO 
codes is v = -0.5h. 

Table 1   Maximum global errors of EIMH and FRANCO for Problem 1
λ k EIMH FRANCO
5 1 9.136536E-07 4.043165E-01

2 2.276584E-11 4.383255E-03
3 4.296043E-15 6.927952E-05

10 3 8.939561E-10 6.504889E-01
4 1.856364E-13 1.028116E-02
5 4.724100E-13 2.184213E-04

Table 2   Maximum global errors of EIMH and FRANCO for Problem 2
k EIMH FRANCO
2 7.105427E-15 2.377168E-04
3 4.440892E-15 1.118888E-05
4 6.217249E-15 6.058119E-07
5 6.572520E-14 3.522574E-08
6 3.046452E-13 2.123302E-09

Table 3   Maximum global errors of EIMH and FRANCO for Problem 3
k EIMH FRANCO
1 3.816392E-16 3.708533E-08
2 2.858824E-15 9.863284E-10
3 2.275957E-15 2.839078E-11
4 2.284284E-14 8.545387E-13
5 6.261658E-14 2.703393E-14
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From the numerical examples, we can see that the maximum global errors for EIMH are 
smaller than that of FRANCO code for solving all problems considered. This demonstrates 
that EIMH gives better accuracy compared to FRANCO code.

Conclusions

We have derived a new implicit exponentially fitted hybrid method which integrates exactly 
the second-order problems with exponential solutions. This method compared favorably 
with the exponentially fitted explicit Runge-Kutta-Nystrom method proposed by Franco 
(2004). All codes are designed in Microsoft Visual C++ version 6.0 in HP computer with 
Intel(R)Core(TM)2DuoCPU P8600@2.40GHz.
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