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Abstract 

 
General linear methods have been proven to be very efficient in solving stiff and non-stiff differential 

equations. Extrapolation is proven to increase the accuracy of any methods. This paper investigates the 

accuracy and efficiencies of explicit general linear methods with inherent Runge-Kutta stability (IRKs) with 

and without extrapolation. The numerical results on the Van der Pol (VDP) and Brusselator (Bruss) non-stiff 

test equations showed that IRKs with extrapolation are more efficient and accurate than itself without 

extrapolation.  
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INTRODUCTION 

 

The ordinary differential equations are considered by 

 

                                   𝑦′ = 𝑓(𝑦(𝑡)),    𝑡 ∈ [𝑡0, 𝑡𝑛],  𝑦(𝑡0) = 𝑦0.                                        (1) 

 

On the following uniform grid  

                                  𝑥𝑛 = 𝑥0 + 𝑛ℎ, 𝑁ℎ = 𝑋 − 𝑥0,   𝑛 = 0,1, … ,𝑁, 

 

then the general linear methods can be solve Eq. 1, which formulated by 

 

𝑌𝑖
[𝑛]

= ∑𝑎𝑖𝑗ℎ𝑓 (𝑌𝑗
[𝑛]

) + ∑𝑢𝑖𝑗𝑦𝑗
[𝑛−1]

,

𝑟

𝑗=1

𝑠

𝑗=1

 
 



Journal of Science and Mathematics Letters, Vol 9, Special Issue, 2021 (28-35) 

 ISSN 2462-2052, eISSN 2600-8718 

  

29 

𝑦𝑖
[𝑛]

= ∑𝑏𝑖𝑗ℎ𝑓 (𝑌𝑗
[𝑛]

) + ∑𝑣𝑖𝑗𝑦𝑗
[𝑛−1]

,   

𝑟

𝑗=1

   

𝑠

𝑗=1

 
 

(2) 

 

where 𝑌𝑖
𝑛, 𝑖 = 1,2, … , 𝑠  denotes as internal stages of methods, 𝑦𝑗

[𝑛−1]
 is given as the 

incoming quantities through the step 𝑛 − 1,  𝑦𝑗
[𝑛]

 is the outgoing quantities through the step 

number 𝑛, 𝑓 (𝑌𝑗
[𝑛]

)  is the corresponding stage derivatives. However, the internal stages can 

be approximating of stage order 𝑞 as 

 

𝑌𝑗 = 𝑦(𝑥𝑛−1 + 𝑐𝑗ℎ) + 𝑂(ℎ𝑞+1), 𝑗 = 1,2, … , 𝑠, 

 

and the outgoing quantities can be approximating of order 𝑝 as  

 

𝑦𝑗
[𝑛]

= ∑ 𝛼𝑗𝑘ℎ
𝑘𝑦(𝑘)(𝑥𝑛)

𝑝

𝑘=0

+ 𝑂(ℎ𝑝+1), 𝑗 = 1,2, … , 𝑠. 

 

In this paper, the idea of extrapolation is applied with general linear methods that 

have inherent Runge-Kutta stability (IRKS) (Wright, 2002). Extrapolation technique is 

based on the idea by Richardson in 1927 (Richardson, 1927) where he used two of 

approximations (ℎ0, ℎ1) to accelerate the convergence of a sequence. His idea had been 

applied with some efficient numerical solutions, such as Runge-Kutta (RK) methods 

(Gorgey, 2012; Ismail, 2013). 

 General linear methods are divided into four types, the type I  known as the explicit 

methods to solve the non stiff differential equations while the type II known as the implicit 

methods considered to solve the stiff differential equations. These two types are considered 

in sequential computations. The other two types are given in parallel computations (Butcher, 

2016). Since the explicit methods proved have lower cost implementations (Jackiewicz, 

2009) then we are interested in the first type (explicit methods) with using the extrapolation 

technique to improve the accuracy to solve the ordinary differential equation.  

Many researchers have been trying in many ways to construct an efficient general 

linear methods to solve the ordinary differential equations. One of them is Bazuaye (2017). 

In his research, he extended exponential general linear methods with initial value problem 

to solve the ordinary differential equations. He used the feature feature of exponential, that 

it allows to derive the order conditions of general linear methods, which in turn assisted in 

the construction of a family of methods of higher order. Another example of using the 

effective of general linear methods for solving the methods, is explained by Mahdi (2018). 

In his research, he used the general linear methods to solve the volterra integro-differential 

equations. He proved general linear methods is efficient in solving the non-linear volterra 

integro-differential. Farzi (2018) developed and generalized the scheme of Adams scheme 

which is known as Fuzzy general linear methods for solving fuzzy differential problems 

under the hardly generalized differentiability. He showed that the order of accuracy is more 

efficient by the novel scheme. 

   The article is organized as follows. The first section explains the formulation of 

general linear methods and its coefficient matrices. The constructions of IRKS methods is 

proposed in Section 3. The deriving of the order conditions are given in Section 4. Section 

5 reviews the assumptions and requirements of applying the extrapolation with the current 
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methods. Numerical results for VDP and Bruss test equations are presented in Section 6. 

The final section explains the conclusions and future works. 

 

 

GENERAL LINEAR METHODS 

Ordinary differential equations can be solved approximately by numerical methods, given 

by Runge-Kutta and linear multi-step methods. However, these methods have some 

disadvantages such as, high computational cost in Runge-Kutta methods and weak stability 

in multi-step methods. Forty years ago, Butcher in Butcher (2009) introduced a method 

upgrade the disadvantage in the previous methods to solve the ordinary differential 

equations.  These methods known as general linear methods, which approved have a good 

balanced among the accuracy and stability within reducer cost. 

For convenience, the general linear methods Eq. 2 can be represented by  

       𝑌([𝑛]) = ℎ(𝐴 ⊗ 𝐼𝑚)𝐹(𝑌[𝑛]) + (𝑈 ⊗ 𝐼𝑚)𝑦[𝑛−1], 

                        𝑦([𝑛]) = ℎ(𝐵 ⊗ 𝐼𝑚)𝐹(𝑌[𝑛]) + (𝑉 ⊗ 𝐼𝑚)𝑦[𝑛−1]. 

The coefficients matrix of general linear methods assumed as 𝑎𝑖𝑗 = 𝐴, 𝑢𝑖𝑗 = 𝑈, 𝑏𝑖𝑗 = 𝐵 and 

𝑣𝑖𝑗 = 𝑉. General linear methods classified into four types according to the way of structure 

the coefficient matrix 𝐴, which is given by  

[

𝜆 0 ⋯ 0
𝑎21 𝜆 ⋯ 0
⋮ ⋮ ⋯ ⋮

𝑎𝑠1 𝑎𝑠2 ⋯ 𝜆

], 

where if 𝜆 = 0 then methods are known as explicit methods, otherwise then methods known 

as implicit methods, these types are given in sequential computations. The other two types 

given in parallel computations. Furthermore, the coefficient matrix A determines the cost of 

implementation, which is considered here to these methods as Runge-Kutta methods to 

make the cost lower.  

The coefficient matrix V explains the stability of general linear methods, which is 

given a matrix of rank one to ensure zero stability. To approve this assumption, then 

coefficient V has selected as a simple structure, which the first column was given to equal 

basis vector e; that’s mean Ve=e (Jackiewicz, 2009).    

 

IRKS Methods 

 

General linear methods with inherent Runge-Kutta stability (IRKs) have been studied by 

Wright (2002), known as IRKs methods. The restrictions of IRKs assumed on the way of 

formulating the coefficients A, U, B and V of general linear methods to make sure their 

stability is similar to the stability of the Runge-Kutta method.  

The coefficient 𝑉 considered as 𝑉𝑒 = 𝑒, and then general linear methods have 

inherent Runge-Kutta stability if  

 

𝐵𝐴 = 𝑋𝐵, (3) 

                                                       𝐵𝑈 ≡ 𝑋𝑉 − 𝑉𝑋, (4) 
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for some matrix 𝑋. The following definition shows how the stability properties of Runge-

Kutta methods assumed to IRKs methods. 

Definition: General linear methods are said to have Runge-Kutta stability, then the stability 

polynomial given by  

P(ω) = det(ωI − M(z)) = ωr−1(ω − R(z)), 
 

where  R(z) denotes the stability function of Runge-Kutta methods, as well as M(z) is 

defined as the stability matrix of general linear methods, which is supposed by 

 

𝑀(𝑧) = 𝑉 + 𝑧𝐵(𝐼 − 𝑧𝐴)−1𝑈. 
 

Since our aim in this paper concentrate on the explicit part, then the stability function 𝑅(𝑧) 

considered as same as explicit Runge-Kutta methods, given by  

 

𝑅(𝑧) = 𝑅𝑝(𝑧; 𝜂)1 + 𝑧 +
𝑧2

2!
+ ⋯+

𝑧𝑝

𝑝!
+ 𝜂

𝑧𝑝+1

(𝑝 + 1)!
, 

 

here 𝜂 is error constant and the order condition is given by  𝑝, explained by details next.  

  

Order Conditions 

 

The construction and implementations of general linear methods are completely tough, to 

make them easier if assuming the order of method p is equal to stage order q. However, 

before starting deriving the order condition, consider the input and output approximations 

firstly are given in Nordsieck form as follows: 

 

𝑦[𝑛] ≈ [

𝑦(𝑥𝑛)

ℎ𝑦′(𝑥𝑛)
⋮

ℎ𝑝𝑦(𝑝)(𝑥𝑛)

] + 𝑂(ℎ𝑝+1), 

 

Secondly, by following Wright (2002) the stage values 𝑌𝑛 and the output approximations 

𝑦[𝑛] given by, 

 

𝑌𝑛 = 𝐶𝑦[𝑛−1] + 𝑂(ℎ𝑝+1), 

                                                   𝑦[𝑛] = 𝐸𝑦[𝑛−1] + 𝑂(ℎ𝑝+1),  
where   

 



Journal of Science and Mathematics Letters, Vol 9, Special Issue, 2021 (28-35) 

 ISSN 2462-2052, eISSN 2600-8718                                                                                             

 

32 

                              𝐶 =

[
 
 
 
 
 
 
 
 
 
 
 1 𝑐1

𝑐1
2

2!
⋯

𝑐1
(𝑝−1)

(𝑝 − 1)!

𝑐1
𝑝

𝑝!

1 𝑐2

𝑐2
2

2!
⋯

𝑐2
(𝑝−1)

(𝑝 − 1)!

𝑐2
𝑝

𝑝!

⋮ ⋮ ⋮ ⋮ ⋮

1 𝑐𝑝

𝑐𝑝
2

2!
⋯

𝑐𝑝
(𝑝−1)

(𝑝 − 1)!

𝑐𝑝
𝑝

𝑝!

1 𝑐𝑝+1

𝑐𝑝+1
2

2!
⋯

𝑐𝑝+1
(𝑝−1)

(𝑝 − 1)!

𝑐𝑝+1
𝑝

𝑝! ]
 
 
 
 
 
 
 
 
 
 
 

,       

 𝐸 = exp (𝐾) =

[
 
 
 
 
 
 
 
 
 
 
 
 1

1

1!

1

2!
⋯

1

(𝑝 − 1)!

1

𝑝!

0 1
1

1!
⋯

1

(𝑝 − 2)!

1

(𝑝 − 1)!

0 0 1 ⋯
1

(𝑝 − 3)!

1

(𝑝 − 2)!

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯
1

1!

1

2!

0 0 0 ⋯ 1
1

1!
0 0 0 ⋯ 0 1 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Using these assumptions in the form of general linear methods Eq. 2 and using functions of 

complex variables, it is useful in the following theorem, explaining the order conditions.    

Theorem: General linear methods in the Nordsieck representation have the condition p = q 

iff 

exp(cz) = zAexp(cz) + UZ + O(zp+1), (5) 

exp(z)Z = zBexp(cz) + VZ + O(zp+1), (6) 

 

where exp(cz) denotes vector of components and Z defined by  

 

Z = [1  z  z2  … zp−1  zp], 
 

We can conclude from the above theorem, the following results: 

 

𝑈 = 𝐶 − 𝐴𝐶𝐾, (7) 

𝑉 = 𝐸 − 𝐵𝐶𝐾. (8) 

 

These results help us to know the way to construct the order of IRKs methods. That means, 

if the coefficients 𝐴 and 𝐵 are constructed in Eq. 3, then it’s easy to know the other 

coefficient matrices 𝑈 and 𝑉 by results Eq. 7 and Eq. 8.     
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Applications of Extrapolation  

  

Extrapolation technique is one of the efficient numerical procedures that can be utilized 

efficiently in the efforts of some programs to enhance the performance by which long time-

dependent engineering and scientific issues are dealing with the computers. Richardson first 

derived the extrapolation (Richardson, 1911). It is an approximation method in the 

numerical solution of differential equations. The different phenomena in engineering and 

science are successfully described using some advanced large-scale mathematical models. 

The extrapolation in most applications is used as an initial technique to evaluate the 

magnitude of the computational errors and is used to enhance the given results' accuracy 

(Richardson, 1927). 

  There are two ways to apply extrapolation. The active case occurs if the extrapolated 

value is used to compute the next iterations. On the other hand, if the extrapolation is only 

applied without using the extrapolated solution, the approach is known as passive.  

The extrapolation technique can be performed with the general linear methods by 

using the assumptions (Zlatev, 2018) in the following steps: 

• Implement one large step N with the step-size ℎ by applying 𝑦𝑛−1. as a starting values 

to compute: 

 

     𝑧𝑛 = 𝑅(𝑧)𝑦𝑛−1. 

• Implement two small steps with the step-size 1/2ℎ to evaluate the approximation 

𝒘𝒏 of 𝑦(𝑡𝑛). 

𝑤𝑛 = [𝑅 (
𝑧

2
)]

2

𝑦𝑛−1. 

• Evaluate 𝑦𝑛 such as  

𝑦𝑛 =
2𝑝𝒘𝒏 − 𝒛𝒏

2𝑝 − 1
=

2𝑝 [𝑅 (
𝑧
2)]

2

− 𝑅(𝑧)

2𝑝 − 1
𝑦𝑛−1 

 
 

NUMERICAL RESULTS 

 
The numerical experiments of the current methods are used the extrapolation technique in 

their implementations. These experiments are based on solving some efficient test equations 

such as Van der Pol (VDP) and Brusselator (Bruss) non-stiff test equations, which is found 

in Hairer (1993). The numerical results of these methods are presented in Figures using the 

MATLAB software. The MATLAB code constructs IRKs methods based on irks14t, which 

is considered by Abdi (2019). Since we are using the extrapolation technique with the 

current methods, then the given code is updated to a couple of codes such as irks2xactive 

and irks2xpassive. They explain extrapolated IRKS of order two in active and passive 

modes. The global errors on all the graphs are computed by taking the maximum norm such 

that for different tolerances on which the tolerance is reduced by 1/10 at every iteration.  

The starting tolerance used is 10−5.   
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Figure 1. Numerical results for VDP equation using order-2 IRKS with passive and active extrapolations 

 

                                         

Figure 2. Numerical results for Bruss equation using order-2 IRKS with passive and active extrapolations 

 

In the given numerical experiments, Figure 1 and Figure 2, we can conclude that the 

extrapolated IRKs methods are implemented more efficiently and accurately than the same 

methods without the extrapolation. Furthermore, active extrapolation gave the most accurate 

and efficient than others. Based on the above results, if we compare the current methods' 

efficiency with other famous methods such as ODE45 and ODE15s, we can still see the 

active extrapolation of general linear methods is super-efficient.     

 

 

CONCLUSION AND FUTURE WORK 

The numerical results show an improved accuracy for order 2 extrapolated IRKs methods 

to solve the non-stiff problems. For the test problems, order-2 general linear methods with 

extrapolation are efficient than that without extrapolation. Overall, the extrapolation 

improved the accuracy of the general linear methods with inherent Runge-Kutta stability. It 

is hoped that theoretical analysis of extrapolation for general linear methods with high 

orders can be given in the future. 
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