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Abstract 

 
This research focuses on the implementation strategies by the implicit Runge-Kutta Gauss methods in 

solving Robertson problem using variable stepsize setting. This research considers ideas of 

implementation strategies by Hairer and Wanner (HW) and Gonzalez-Pinto, Montijano and Randez 

(GMR) schemes that uses a certain transformation matrix T to improve the efficiency of the numerical 

methods. Both implementations use simplified Newton iterations to solve the nonlinear algebraic 

equations for the implicit methods. These implementation strategies are compared with the modified 

Hairer and Wanner (MHW) scheme without using any transformation matrix T. The numerical methods 

considered are the implicit 3-stage Gauss (G3) method of order-6. The numerical results are given for 

Robertson problem which is a chemical reaction stiff problem. The variable stepsize setting is adapted 

in Matlab code that estimates the error using symmetrization technique.  Based on the numerical 

experiments, it is observed that GMR scheme is efficient by using the G3 method especially when the 

error estimation is obtained by using symmetrization technique instead of local extrapolation if compared 

with other schemes. In conclusion, GMR scheme is seen to be very robust in solving Robertson problem 

by the G3 method in terms of tolerance and computational time. 

 

Keywords: variable stepsize setting, error estimation, local extrapolation, symmetrization. 

 

 

INTRODUCTION 
 

In numerical analysis, it is very important to choose a method that satisfy good stability 

properties and having higher order of convergence rate. Since Runge-Kutta (RK) 

methods complies with these properties, thus a method such as Gauss methods are 

particularly being chosen because of their advantages that suitable in solving stiff 

systems. This is also due to sufficiently high stage and classical orders. Even though 

the computational cost for Gauss methods are relatively high, however the methods 

provide better solution of same accuracy as the order of the implicit Runge-Kutta (IRK) 

methods. The study showed that the methods numerically integrate various sorts of 
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ODEs such as non-stiff and stiff problems, Hamiltonian systems and invertible 

equations.  
Generally, the approximate solution obtained by an s-stage RK methods with 

stepsize h  for the interval  0 , nx x  can be defined by the following equations (Butcher, 

2016): 
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where   denotes the Kronecker product,  1,... )1( , Te =  and NI  is the N N  identity 

matrix and 
ny  is the update of the RK method. 

ny  will be updated until the approximate 

solution is obtained for each problem that being tested. Normally the numerical solution 

is approximated until the desired solution is obtained or until the approximate solution 

reached the target interval 
nx .  

González-Pinto et al. (1994) investigated an experiment regarding linear 

stability of IRK methods. In their research, they proposed a method by Cooper and 

Butcher (1983) in determining the most efficient method in solving IRK methods. They 

concluded that the implementation by using Gauss method performs much better than 

diagonally IRK method (simply denoted as DIRK method) even though both of the 

methods are categorized as A-stable and have the same order 4. Since the Gauss 

methods having the handicap of solving the implicit system as shown in Eq. 1 during 

the experiments, however their relatively high stages and good stability properties make 

them not only competitive but highly recommended to other methods like DIRK 

methods for the solution of nonlinear stiff problems when implemented using special 

iterative schemes. In few years later, Hairer and Wanner (1999) proposed an iterative 

scheme to solve Radau IIA method using a T transformation matrix. 

This article focuses on the performance of 3-stage Gauss (G3) method by using 

the implementation schemes suggested by Hairer and Wanner (1999), González-Pinto 

et al. (1994) and González-Pinto et al. (1995) in solving Robertson problem.  

Robertson problem is a chemical reaction problem proposed by Robertson 

(1966) that describes the kinetics of an autocatalytic reaction. It was known as ROBER 

problem and consists of a stiff system of three nonlinear ODEs (Hairer & Wanner, 

1996). The problem can be written in the following form 
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The function f  can also be written in a system as given by 
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Since past decade, the ROBER problem became very popular among mathematicians 

for the numerical studies and is favorable to be used as a test problem for the solution 

of stiff systems. Originally, the problem was posed on the time interval 0 40t  , but 

it is reasonable to integrate on much longer intervals in determining their stability and 

efficiency. However, Hindmarsh (1980) discovered that many codes fail if the problem 

is integrated at a longer computational time t . Since Robertson problem is a nonlinear 

stiff problem, thus a variable stepsize setting is a crucial components that need to be 

catered in improving the convergence rate and satisfying the efficiency properties. 

Many researchers such as Xu et al. (2015), Wang et al. (2017) and Yang et al. (2020) 

implemented the variable stepsize setting in their research and it has been proven to 

give a robust implementation, thus suitable in solving higher order methods. Since 

variable stepsize are very useful in getting excellent performance for IRK methods, thus 

it is favorable to solve the Robertson problem in this research.   

 

 

MATERIALS AND METHODS/ METHODOLOGY 
 

The IRK methods are expensive and difficult to implement due to the nonlinear 

equations involved when finding the internal stage derivatives 
 n

Y  and need to be 

replaced by an iterative computation which is known as Newton-Raphson iteration. The 

Newton-Raphson iteration for  ( 0)f x =  where :( ) n nf x →  is given by 
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There are two ways to implement Newton-Raphson iterations such as full Newton and 

simplified Newton. Full Newton iteration is preferred for nonstiff problems as 

investigated by Muhammad and Gorgey (2018). Since Robertson problem is a stiff 

problem, thus only simplified Newton is considered throughout the investigation where 

the variable stepsize setting is used to investigate the performances of G3 method for 

three different implementation strategies.  

As we concern, the variable stepsize setting is very important to be implemented 

as many researchers are still finding the best way that suitable to solve certain problems 

either in mathematical, biological, chemical, physical, engineering or in any related 

fields. Many researchers have used variable stepsize to obtain efficient numerical 

results. Among them are Gorgey (2016), Wang et al. (2017) and González-Pinto et al. 

(2020). This shows that the variable stepsize is a crutial component that need to be 

implemented in order to achieve convergence and satisfy the efficiency behaviour.   

 

Implementation schemes by González-Pinto et al. (1994, 1995) and Hairer and 

Wanner (1999) 

 

For this research, three different implementation strategies have been investigated. The 

implementation scheme by González-Pinto et al. (1994, 1995) is denoted by GMR 

scheme, Hairer and Wanner (1999) is denoted by HW scheme and the last one is 

denoted by MHW scheme which refers to modified HW scheme. The difference 

between HW and MHW scheme is that no transformation such that 
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( )
1 1 1,NhA I S T A T
− − − =  and   ( )  1n n

NW T I Z−=   is applied to MHW scheme. The 

HW scheme is specially designed for the 3-stage Radau method and this scheme has 

been proven to give a robust implementation. The reason for multiplying the stage 

derivatives by ( )
1

NhA I
−
   is to transform matrix T  so that 

1 1S T A T− −=  and 

  ( )  1n n

NW T I Z−=   can be introduced where S  is the Jordan canonical form of A  

that has the same diagonal elements. 

 

The stage equation of HW scheme is given by 

 
 ( ) ( )   ( ) ( )  ( )1 1

1 1,
n n n

N N n N nG W h S I W T I F x ch T I W e y− −

− −=  −  +  +  ,          (4) 

 

with block diagonal matrix of the Jacobian such that  
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Solving for 
 n

W  by using Newton-Raphson iteration yields 

 

   ( )( )  ( )( )
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where  
     1n n n

W W W
+

 = − . 

 

The update ny  as given in Eq. 1 is therefore given by 

 

( )  1

1

nT

n n Ny y b A T I W−

−= +   .                           (7) 

 

As mentioned previously, GMR scheme is a modification from Cooper and Butcher 

(1983) implementation scheme. Their scheme is proven to give a convergent behaviour 

for linear and constant coefficient problems and also very efficient for general 

problems. Since the nonlinear stiff problems has been not investigated in details, thus 

the GMR scheme is implemented in solving the nonlinear stiff problem which is 

Robertson problem for G3 method. The general equation of the iterative scheme given 

by González-Pinto et al. (1994, 1995) are modified based on Eq. 1. The derivation of 

the iterative scheme can be found in González-Pinto et al. (1994) and the general 

equation are given as follows: 
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where 1,2, ,n s= . In González-Pinto et al. (1994, 1995), the coefficient k  is used 

instead of n . In this research, we changed into coefficient n  because we want to use 

the same coefficient as the general equations of Runge-Kutta methods introduced by 



Journal of Science and Mathematics Letters, Vol 9, Special Issue, 2021 (36-44) 

 ISSN 2462-2052, eISSN 2600-8718 

 

40 

Butcher (2016). Smaller quantities 
   

1

n n

nZ Y e y −= −    is applied to Eq. 8 and the new 

equation of the iteration are given by 

 

( )     ( )  ( )
     

1

1

,

,

n n n

N N n

n n n

I h T J E Z h A I F Z e y

Z Z E

−

+

−  = +  +   

= +

               (9) 

 

There exists matrix T such that T  is a real nonsingular constant matrix of dimension 

s  and it contained a unique eigenvalue 0  . This matrix T could be advantages in 

reducing the additional cost that was involved in the implementation.   

 In addition to this error estimation, the authors have also used the error 

estimation suggested by Gorgey (2016) that uses symmetrization approach. The 

implementation of symmetrizer does not involve much cost as symmetrization is only 

applied at the end of the step by the update which is given by 

 
   ( )11 n nTy u A PY Y

+−= +               (10) 

 

where Y refers to the internal stage values and the weight vector u is chosen to satisfy 

the damping and order conditions by the G3 method (Chan & Gorgey, 2013). For G3 

method, u is given by 
13 3 15 1 13 3 15

, ,
360 45 360

u T
 + −

= − 
 

. 

 

For example, the order-5 symmetrizers for G3 method by referring to Eq. 10 is therefore 

given by 
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In solving stiff ODEs problems of IRK methods, extrapolation technique has 

been introduced as an alternative for local error estimation and is applied together with 

G3 method. The general equation of extrapolation is given by 

 

( )2 12
,

2 1

p

p

y y
y

−
=

−
               (12) 

 

where p  is the order of the RK methods and 2y  and 1y  are the solutions attained by 

using stepsizes, h  and 2h  respectively. The difference between 1y  and 2y  gives the 

local error estimation. Extrapolation can be found in two difference modes such as 

active and passive modes. Active extrapolation happened when the value of 

extrapolation is used to capture the next computation while passive extrapolation occurs 

when there is no need in using the extrapolated value for any subsequent computations 

(Ismail & Gorgey, 2015). Therefore, there is only one mode that can be applied in the 

variable stepsize setting which is the active mode. In Ismail and Gorgey (2013), they 

mentioned that the passive mode of rational and polynomial failed to perform when the 

stiff ratio is high. This is clearly explained that the passive mode is not suitable for stiff 
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problems. Since Robertson problem is a stiff problem, thus the passive mode is not 

recommended to be used. 

 The error estimation by the symmetrization is also used as an embedded pair. 

For instant, if G3 is the base method 
ny  as defined in Eq. 1 and the symmetizer of G3 

is 
ny  as given in Eq. 11, the error estimation is obtained by taking the difference 

between 
ny  and 

ny . Detailed explanation about this approach is given by Gorgey 

(2016). 

 

 

RESULTS AND DISCUSSION 
 

In the numerical experiments, the Robertson problem as given in Eq. 2 is integrated to 

10nx =  with stepsize 0.01h = . The numerical result for G3 method are given in Figure 

1, Figure 2 and Figure 3 respectively. The Butcher tableau of G3 method can be found 

in Butcher (2016). Figure 1 and Figure 2 showed two plots which are the loglog error 

versus loglog tolerance plot and loglog error versus CPU time plot for Robertson 

problem using three different implementation strategies as mentioned previously. In 

Figure 1, it is observed that GMR scheme gives the smallest error among the others as 

the tolerances get stringent.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Global error versus tolerance graph of 3-stage (G3) Gauss method for Robertson problem  
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Figure 2. Global error versus CPU time graphs of 3-stage (G3) Gauss method for Robertson problem  

 

However, for longer computational time the GMR scheme got destroyed by the 

round-off error as given in Figure 2 and decay much faster than the others even though 

the solution gives the least error. HW scheme requires more computational time if 

compared with GMR and modified HW (MHW) schemes. Based on Figure 2, for the 

next numerical results which is to compare the error estimation by the symmetrization 

and local extrapolation, the comparison are only given for GMR and MHW schemes. 

In Figure 3, there are four graphs obtained. The first two graphs which denoted by 

MHW and GMR schemes refer to the numerical results by using symmetrization 

technique, while the last two graphs which denoted by MHW and GMR scheme xtrap 

refer to the numerical results by using local extrapolation technique. The term ‘xtrap’ 

stands for extrapolation.  

 

 
Figure 3. Global error versus CPU time graphs of 3-stage (G3) Gauss method for Robertson problem 

by using symmetrization technique and local extrapolation 

 

 Figure 3 shows the error estimation by using symmetrization and local 

extrapolation for G3 methods with GMR and MHW schemes. GMR scheme is observed 

to give the smallest error for the longer computational time compared to the others. 

MHW on the other hand although gives a straight line for the plot, the scheme is not as 

efficient as GMR scheme. Both schemes show the error estimation using local 

extrapolation is not as efficient as error estimation using symmetrization technique. 
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CONCLUSION 
 

The main objectives of this research is to study the behaviour of variable stepsize setting 

which implemented using implementation schemes by González-Pinto et al. (1994, 

1995) and Hairer and Wanner (1999) by the 3-stage (G3) Gauss method.  

Generally, the GMR scheme is constructed for the families of Gauss methods 

while HW scheme is constructed for Radau IIA method. However, based on this 

research, it is shown that the standard implementation scheme with some tuning using 

HW scheme known as modified HW (MHW) scheme that does not involve any 

transformation matrix T can be as efficient as the HW and GMR schemes. GMR 

scheme also shown to give greater accuracy for error estimation using symmetrization 

technique if compared with local extrapolation.  
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