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ABSTRACT 

 

This paper presents the simulation of numerical solutions to the navigational problem of an 

agent traveling safely in its environment. The approach is based on the numeric solutions of 

the boundary value problem (BVP) that generate harmonic potential fields through a 

differential equation whose gradient represents navigation routes to the destination. Two 

methods, namely KSOR and KAOR, were tested to solve the BVP. KSOR and KAOR are 

variants of the standard SOR and AOR methods, respectively. In this work, the KSOR and 

KAOR methods were used to solve the BVP by applying Laplace's equation to obtain harmonic 

functions. The generated harmonic functions are then utilized by the searching algorithm to 

find a smooth navigational route for an agent to travel in its environment without colliding with 

any obstacles. The numerical results from the solutions of BVP demonstrate that the KAOR 

provides a faster execution time with fewer iterations compared to the KSOR method. 

 

Keywords: KSOR, KAOR, Harmonic function, navigation, boundary value problem, 

Laplace’s equation  

 

 

1. INTRODUCTION 

 

Navigation problem is known as one of the most challenging topics in robotics and 

automated applications. The main aim of solving the navigation problem is basically on finding 

the best route for an object to move without colliding with any obstacles in the specified 

environment. There are several concerns on navigation problems such as the efficiency and 

safety. Firstly, the efficiency of the method used is considered the most significant factor as it 

will act as a guide to find the destination in a short time. Therefore, the generated route should 

not cause the agent from stuck at the local minima and tax too much time for unnecessary 

moves. Next, the safeness of the route is one of the critical issues in route navigation. The 

generated route should be a collision-free route where it can avoid all known obstacles inside 

the environment.  

Potential field is a commonly used method to find a safe navigational route for an agent 

to move safely in its environment (Montiel, et. al., 2015). Potential field has the ability to adapt 

toward unknown scenarios by understanding the current state of the environment (Sabudin et 

al., 2016). This method, however, suffers from a local minima problem where it cause the agent 

stuck or not move at all. Hence, in order to overcome this problem, this study employs the 
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harmonic potentials to solve the route navigational problem. Harmonic functions are known as 

the solution for Laplace's equation. They are known to have several properties that are 
beneficial in robotics and automated applications. The first implementation of the solution of 

Laplace's equation into route navigational problem was independently conducted by Connolly 

et al. (1990) and Akishita et al. (1990). 
Various methods have been investigated for computing the harmonic functions, but the 

most common methods are approaches based on numerical methods. This is mainly due to the 

capability of fast computing resources and efficient numerical methods in solving the problem. 

Prior, there were three standard iterative methods used to solve route navigation problems such 

as Jacobi, Gauss-Seidel (GS), and Successive Over Relaxation (SOR) (Dahalan et al., 2017). 

In the literature, it was shown that the performance of SOR is noticeably faster than the classical 

Jacobi and standard GS. Alternatively, Daily and Bevly (2008) used an analytical solution to 

solve the linear system. The use of the finite element method for solving Laplace's equation 

was reported by Al-Taweel et al. (2021). A deep learning approach to the problem was 

presented by Nguyen et al. (2020). The application of BVP for path planning was demonstrated 

by Prestesy and Idiartz (2010). In the work by Wray et al. (2016) and Chou et al. (2017), path 

planning based on log-space harmonic potential was applied. More recently, a harmonic-based 

solution was also applied to deal with the autonomous robot exploration problem (Grontas et 

al., 2020). In 2012, Youssef introduced a new variant of SOR called Kaudd Successive Over 

Relaxation (KSOR). Later, a new version of KSOR was described by Constantinescu et al. 

(2019). A study on KSOR such as solving integral equation problems was reported by Radzuan 

et al. (2017).  

A variant of KSOR was applied to solve parabolic equations Muhiddin et al. (2020), 

while faster Half-Sweep KSOR was employed in the previous works to reduce the amount of 

computation (Suardi et al., 2017; Musli and Saudi, 2019). The Kaudd Accelerated Over 

Relaxation (KAOR) was later introduced by Youssef and Farid (2015) for solving linear 

systems. They described the advantages of the KAOR in the choice of optimum parameters. 

However, the KAOR method has not yet been tested for solving BVP in agent navigation 

problems. Thus, the main purpose of this study is to examine the feasibility of using the KAOR 

method to obtain the harmonic functions that would be utilized by the route finding algorithm 

to produce a smooth path for an agent to move safely in its environment.  

 

2. MATERIALS AND METHODS 

 

2.1. Problem formulation 

 

 Harmonic functions are known as the solution of Laplace's equation that is beneficial in 

solving route navigational problems. One of its major advantages is it is free from local minima 

problems (Akishita et al., 1990). A harmonic function on a domain is a function that satisfies 

Laplace's equation  

𝛻2𝑈 = ∑
𝜕2𝑈

𝜕𝑥𝑖
2

𝑛

𝑖=1

= 0 

(1) 

where xi and n correspondingly denote the i-th Cartesian coordinate and the dimension of the 

environment. In the case of the construction of a virtual environment, the boundary consists of 

both the inner and outer walls and all obstacles. By applying Laplace's equation as a constraint, 

the creation of a local minimum inside the virtual environment is avoided, since the harmonic 

functions fulfill the min-max principle. Thus, the only critical points allowed to occur are 

saddle points where the gradients from all directions are zero. 
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 Navigational route problems for an agent in a virtual environment can be described as a 

steady-state heat transfer problem. Outer and inner boundary walls and all obstacles inside the 
virtual environment are treated as heat sources whilst the goal point is fixed as a heat sink that 

pulls the heat in. This heat-transfer process creates a temperature distribution where the heat 

moves from higher heat sources to the heat sink with lower temperatures. By using the above 

analogy, the solutions of Laplace's equation are applied to constrain the harmonic potential 

distribution in the virtual environment. Through an iterative process, harmonic potentials are 

computed until the specified convergence criterion is satisfied. The general idea is to trace the 

distribution of harmonic functions where the potentials flow from higher to lower values. Then, 

the gradient descends search strategy can be applied to find the navigational route from an 

arbitrary start point to the lowest potential value at the goal point.  
In the simulation, a point inside the virtual environment represents the virtual agent. 

Meanwhile, the virtual environment itself is represented in two-dimensional rectangular outer 

boundary walls containing various shapes of inner walls and obstacles. The type of virtual 

environment selected in this simulation is static maps taken from the study reported in (de Silva 

et al., 2002). The simulations considered two maps of several sizes. 

 

2.2. The KSOR method 

 

 The KSOR is a variant of the SOR method for solving linear system problems that have 

been introduced by Youssef (2012). In this study, KSOR is used to obtain the solution to 

Laplace's equation. Let us consider the two-dimensional Laplace's equation (1) is written as: 

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
= 0 

(2) 

The second order central difference scheme is then applied to obtain the five-point 

approximation that can be written as follows 

𝑈𝑖−1,𝑗 + 𝑈𝑖+1,𝑗 + 𝑈𝑖,𝑗−1 + 𝑈𝑖,𝑗+1 − 4𝑈𝑖,𝑗 = 0 

(3) 

Equation (3) is used to implement the GS method which is known as a standard iterative method 

to solve any linear systems (Mohammed and Rivaie, 2017), Figure 1 illustrates the stencil point 

of the above difference scheme. Consequently, by adding a weighted parameter 𝑤, the GS 

iterative scheme can be deduced into SOR iterative method. Therefore, the iterative scheme of 

the SOR method is obtained and can be written as: 

𝑈𝑖,𝑗
(𝑘+1)

=
𝑤

4
[𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
+ 𝑈𝑖,𝑗+1

(𝑘)
] 

(4) 

where the value of 𝑤 is defined as 𝑤 ∈  (2, 0). Note that if 𝑤 = 1, the SOR method returns to 

the standard GS method (Hadjidimos, 2000).  

 

 
Figure 1. The stencil point of the standard five-point finite difference approximation scheme 
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The relaxation parameter plays an important role in both SOR and KSOR methods. However, 

the relaxation parameter of KSOR is defined 𝑤∗  ∈   𝑅 − [−2, 0]. Considering a linear system 

of the form 𝐴𝑋 =  𝑏. Matrix A can be decomposed into 𝐴 = 𝐷 − 𝐿 − 𝑈, where D is a diagonal 

part of matrix A, and matrices L and U are the strictly lower and upper triangular parts of matrix 

A, respectively. Accordingly, the KSOR method can be written in matrix form as: 

 

 𝑋[𝑛+1] = 𝑇𝐾𝑆𝑂𝑅𝑋[𝑛] + [(1 + 𝑤∗)𝐷 − 𝑤∗]−1𝑤∗𝑏 

 𝑇𝐾𝑆𝑂𝑅 = [(1 + 𝑤∗)𝐷 − 𝑤∗𝐿]−1(𝐷 + 𝑤∗𝑈).    

 

The convergence of the KSOR method is given below: 

 

Theorem 1: Let 𝐴 ∈  𝑅𝑚×𝑚 with 𝑎𝑖𝑖≠0. Then 𝜌(𝑇𝐾𝑆𝑂𝑅) ≥
1

|1+𝑤∗|
, which implies that the 

KSOR method can converge for all 𝑤∗  ∈   𝑅 − [−2, 0]. 
Proof: for all, 𝑤∗ ≠ −1, we obtain: 

 

det (𝑇𝐾𝑆𝑂𝑅) = det((1 + 𝑤∗)𝐷 − 𝑤∗𝐿)−1(𝐷 + 𝑤∗𝑈)       

= det (((1 + 𝑤∗)𝐷 − 𝑤∗𝐿)−1det(𝐷 + 𝑤∗𝑈))

=
1

det((1 + 𝑤∗)𝐷 − 𝑤∗𝐿)
det(𝐷 + 𝑤∗𝑈)     

=
1

det((1 + 𝑤∗)𝐷)
det(𝐷 + 𝑤∗𝑈)                

=
1

(1 + 𝑤∗)𝑚det(𝐷)
det(𝐷 + 𝑤∗𝑈)             

=
1

(1 + 𝑤∗)𝑚
det(𝐷)−1det(𝐷 + 𝑤∗𝑈)         

=
1

(1 + 𝑤∗)𝑚
det(𝐼 + 𝑤∗𝐷−1𝑈)                     

=
1

(1 + 𝑤∗)𝑚
                                                  

 

 

Since det (𝑇𝐾𝑆𝑂𝑅) = ∏ 𝛽𝑗
𝑚
𝑗=1   where 𝛽𝑗 is the eigenvalues of the iteration matrix, 𝑇𝐾𝑆𝑂𝑅 , 

accordingly we obtain: 

 

|∏ 𝛽𝑗

𝑚

| = |det(𝑇𝐾𝑆𝑂𝑅)| = |
1

(1 + 𝑤∗)𝑚
| ≤ max|𝛽𝑗|

𝑚
. 

Thus (𝑇𝐾𝑆𝑂𝑅) ≥
1

|1+𝑤∗|
 . For convergence, we must have 1 > 𝜌(𝑇𝐾𝑆𝑂𝑅) ≥

1

|1+𝑤∗|
 and this 

gives 𝑤∗  ∈   𝑅 − [−2, 0]. 
 

Theorem 2: The KSOR method is completely consistent with the system (1) for all values of 

the relaxation parameter 𝑤∗  ∈   𝑅 − [−1, 0]. 
 

Proof: The proof is given in the definition described in (Young, 1971). 
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 Further details on the convergence proof of KSOR are described in (Youssef and Taha, 

2013). The relaxation parameter for the KSOR method is less sensitive compared to the SOR. 

This relaxation parameter is used to control the spectral radius of the iteration matrices which 

would significantly affect the convergence rate. The iterative scheme for the KSOR is given 

as: 

𝑈𝑖,𝑗
(𝑘+1)

=
1

1 + 𝑤∗
𝑈𝑖,𝑗

(𝑘)
+

𝑤∗

4(1 + 𝑤∗)
(𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
+ 𝑈𝑖,𝑗+1

(𝑘)
). 

(5) 

2.3. The KAOR method 

 

 Apart from the SOR method, Hadjidimos (1978) developed a new variant called AOR 

iterative scheme that can be written as: 

 

 𝑈𝑖,𝑗
(𝑘+1)

=
𝑤

4
[𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
] +

𝑟

4
[𝑈𝑖−1,𝑗

(𝑘+1)
− 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
− 𝑈𝑖,𝑗−1

(𝑘)
]. 

(6) 

 

The KAOR method is essentially an extension of the AOR and KSOR methods as described in 

details by Youssef and Farid (2015). Its iterative scheme can be obtained by adding an 

accelerated parameter r and is written as:  

 

𝑈𝑖,𝑗
(𝑘+1)

=
1

1 + 𝑤∗
𝑈𝑖,𝑗

(𝑘)
+

𝑤∗

4(1 + 𝑤∗)
(𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
) +  

𝑟

4(1 + 𝑟)
(𝑈𝑖−1,𝑗

(𝑘+1)
− 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
− 𝑈𝑖,𝑗+1

(𝑘)
) . 

(7) 

From equation (7), it can be seen that the additional parameter extends the range for choosing 

the optimum value thus reducing the sensitiveness of the spectral radius of the iteration matrix 

with changes in r  and 𝑤∗ as discussed in (Youssef and Farid, 2015). 

 

2.4. Path planning algorithm 

 

 Both KSOR and KAOR methods employ traditional full-sweep iteration using a five-

point discretization scheme. During the iteration process, all inner nodes in the grid will be 

computed. Before the iteration procedure, matrix U (current harmonic potentials) and matrix V 

(updated harmonic potentials) of the map need to be initialized. Nodes in both matrices that are 

occupied by obstacles are assigned with high potentials, whereas non-occupied nodes are given 

with random potential. Target nodes are assigned with the lowest potentials. In each iteration, 

the harmonic potentials in both matrices are updated using equations (5) and (7) for KSOR and 

KAOR methods, respectively. The algorithm for KSOR (5) and KAOR (7) iterative methods 

is described below: 

 

1. Start time, T1  

2. 𝑤∗ = -2.18, r = -2.12 epsilon = 1e-15  

3. k = 0 

4. repeat 
5. for all nodes do 

6. if node U(i,j) is not occupied then  

7. Update V(u,j) using equation (5) or (7) 

8. end if 

9. end for 
10. Update Error 

11. k = k + 1 

12. until Error < epsilon 

13. Stop time, T2 

14. cputime = T2 - T1  

15. return V, k, cputime  
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During the iteration process, only non-occupied nodes are involved in the calculation. 

All occupied nodes are ignored. Once the convergence criterion is satisfied, the iteration 

process is stopped. The path searching process is then used to trace a smooth path from any 

start position to the specified goal position by descending the slope of the harmonic potentials 

obtained from the iterative methods as described in the above algorithm. From any start 

position, the path tracing algorithm picks the next node with the lowest potential from the 

current neighbouring nodes. This process continues until the goal position is reached which is 

the node with the lowest potential value. The path searching algorithm is described below: 

 

1. Initialize path list, P 

2. Move to the start point, Q 

3. while node(S) is not the target point do 

4. Q <— min(SW, SE, SS, SN) 

5. Push into path list, P <— Q 

6. Move to the next point, Q 

7. end while 
8. return P 

 

where W, E, N, and S denote the position of the current four neighbours (i-1, j), (i+1, j),  

(i, j-1), and (i, j+1) of point S. 

 

3. RESULTS AND DISCUSSION 

 

 The implemented algorithms were evaluated with two indoor maps, to illustrate the 

impact of the existing KSOR (5) on four different sizes in comparison with the newly proposed 

KAOR method (7). The numerical simulations were carried out using three grid sizes of 

165×150, 330×300, 660×600, and 990×900. Both maps consist of a start point, a goal point, 

several obstacles, outer rectangular boundary walls, and various setting of inner walls. The 

solid points in green and red colour denote the start and goal positions, respectively.  

 The simulations were conducted on a machine with an Intel Core i5-3570K processor 

running at 3.40GHz clock speed with 16GB memory. For comparison, two factors were 

recorded such as the number of iterations and computational time for different grid sizes. In 

addition to that, the convergence criterion is set to a very small value e=1.0-15. Such high 

precision is used so that the occurrence of a flat area in the final solution is minimized since 

such a flat area could trigger the route finding process to stop before reaching the goal position. 

In the KSOR method, the parameter 𝑤∗ was set to -2.18, while in the KAOR method, the 

parameters 𝑤∗ and r were set to -2.18 and -2.12, respectively.  Both values were chosen since 

they gave an optimal convergence rate in the preliminary results.  

 Figures 2 and 3 illustrate several generated routes for Map 1 and Map 2, respectively. 

For each map, the path search algorithm successfully generated the route from the starting point 

(red dot) to the destination point (green dot). The destination point needs to be specified before 

the harmonic potentials are computed. The initial point can be specified after the harmonic 

potentials are obtained. As shown in both figures, the generated routes were smooth and safe, 

since they tended to move away from the obstacles. 

Based on Table 1, it is shown that the KAOR iterative method is superior to the KSOR 

method since it requires less number of iterations. The proposed KAOR method is able to 

obtain the solutions of Laplace's equation with fewer iterations and faster computational 

execution than the KSOR on average by approximately 30%. The improvement of the proposed 

KAOR method is due to faster convergence in computing the harmonic functions.  

The computational time of both methods are illustrated in Figure 4. Clearly, the proposed 

KAOR is more efficient than the KSOR iterative method and thus improves the overall 

performance of the route finding algorithm. It can also be observed that the execution time 

increases rapidly as the size of the environment grow. 

 



ISSN 2462-2052 

DOI: https://doi.org/10.37134/jsml.vol11.1.1.2023 

Journal of Science and Mathematics Letters 

Volume 11, Issue 1, 1-9, 2023 

 

7 | P a g e  

  
Figure 2. The generated route from several 

different start and target points on Map 1 of 

300×300 

Figure 3. The generated route from several 

different start and target points on Map 2 of 

300×300 

 

Table 1.  Iterations and computational time for maps 1 and 2 

Map Size Method 

Map 1 Map 2 

Iterations 
Time 

(seconds) 
Iterations 

Time 

(seconds 

165 x 150 KSOR 801 0.299 612 0.157 

KAOR 501 0.147 340 0.089 

330 x 300 KSOR 2865 2.846 2112 2.063 

KAOR 1897 1.920 1432 1.405 

660 x 600 KSOR 11511 46.758 8906 34.974 

KAOR 8183 33.140 6313 25.006 

990 x 900 KSOR 24856 234.125 17763 163.793 

KAOR 17676 165.702 12173 112.731 

 

  
Figure 4. The execution time of the KSOR and KAOR methods on Map 1 and Map 2 

 

4. CONCLUSION 

 

 In this paper, the route navigational problem has been solved iteratively via KSOR and 

KAOR iterative methods. From the observation of numerical results, it is clearly shown that 

the KAOR iterative method requires fewer iteration numbers compared to the KSOR iterative 

method. Consequently, it significantly reduced the computational time required to obtain the 

harmonic potentials. The simulation successfully proved that the generated routes were free 

from the collision. As an extension to the full-sweep approach, investigation of half-sweep and 

quarter-sweep iterations will be considered to further speed up the convergence rate of the 

iteration process, thus improving the performance of the route finding algorithm. 
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