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ABSTRACT 

 

Development of benign and efficient approaches towards the replacement of the conventional 

methods for producing SnO2 nanoparticles (SnO2 NPs) has begun in which a biosynthesis 

process has been introduced. This study utilizes biomolecules, specifically the flavonoids and 

carbohydrate groups in pandan and soybean extracts. The biosynthesized nanoparticles 

underwent characterization through relevant spectroscopies. Fourier transform infrared (FTIR) 

analysis revealed the absorption bands of SnO2 and Sn-O-Sn groups, with the complete 

disappearance of peaks associated with untreated pandan and soybean. X-ray Diffraction 

(XRD) indicated the formation of tetragonal structure in SnO2 NPs with primary peaks at 27o, 

34o, and 51o. Additionally, UV-Visible diffuse reflectance spectroscopy (DRS) yielded band 

gap values of 4.86 and 3.45 eV for SnO2 NPs derived from pandan and soybean, respectively. 

In summary, the application of biosynthesized SnO2 NPs as a potential heterogeneous catalyst 

for purifying dye-polluted water through a photocatalytic process is highlighted. 

 

Keywords: Tin oxide nanoparticles, biosynthesis, pandan, soybean  

 

 

1. INTRODUCTION  
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Green nanotechnology is recognised as a pivotal advancement in the realm of sustainable 

technology, actively pursuing the fabrication of nanomaterials while concurrently minimising 

environmental degradation stemming from their production (Gebreslassie & Gebretnsae, 2021; 

Jadhav & Kokate, 2020). Historically, the scientific community has developed a myriad of 

chemical and physical methodologies for synthesising tin dioxide nanoparticles (SnO2 NPs), 

including but not limited to electrochemical and photochemical synthesis, microwave 

irradiation, hydrothermal processes, and laser ablation. These methods have been extensively 

applied in the creation of SnO2 nanomaterials (Haritha et al., 2016). However, these traditional 

processes often necessitate the employment of noxious chemicals, the application of elevated 

temperatures, and substantial energy consumption, alongside considerable production expenses 

(Vidhu & Philip, 2001). In response to growing ecological apprehensions, there has been a 

pronounced shift towards more sustainable practices within green technology. Notably, this 

includes the biosynthesis of nanomaterials, utilising biological entities such as plant extracts 

(Gebre & Senduku, 2019). It is suggested that bioactive compounds found within plant matter, 

including alkaloids, phenolic acids, polyphenols, proteins, sugars/carbohydrates, and 

terpenoids, serve as both reducing and capping agents during the biosynthesis process, thereby 

facilitating the production of nanomaterial-based products (Kavitha et al., 2013; Zulpahmi et 

al., 2023). 

This research delves into the potential of two biomaterials endemic to Malaysia; pandan 

leaves and soybeans for the biosynthesis of SnO2 NPs. Pandan, scientifically termed Pandanus 

amaryllifolius, is indigenous to Malaysia and has been traditionally harnessed for its flavour-

enhancing properties in food and beverages. This plant is particularly rich in flavonoids, 

compounds that have shown efficacy as reducing and capping agents for tin cations 

(Thatsanasuwan et al., 2015; Zakaria at al., 2020; Buniyamin et al., 2021). Conversely, 

soybeans are a staple in human nutrition, serving as a base for infant formulas, flours, protein 

isolates and concentrates, and textured fibres, with tempeh and tofu being among the most 

prevalent soy-based foods (Friedman & Brandon, 2001). Carbohydrates, constituting nearly 

35% of the soybean, whether structural or non-structural, share a molecular resemblance with 

flavonoids, notably the presence of adjacent hydroxyl groups. These groups are proficient in 

electron donation, thus facilitating the conversion of metal cations into nanoparticles. Their 

presence is instrumental in binding to nanoparticle surfaces, which assists in their stabilisation 

and prevents agglomeration (Kavitha et al., 2013; Lokuruka, 2010; Yasar et al., 2020). This 

investigation presents findings on the use of pandan and soybean extracts in the synthesis of 

SnO2 NPs, including characterization and an examination of their energy band gap values, 

particularly in relation to their prospective applications in photocatalysis. This analysis is 

meticulously aligned with established scientific principles, ensuring a robust and systematic 

exploration of the subject matter (Vasiljevic et al., 2020; Abbasi & Hasanpour, 2017; Wang, 

2018; Yuan & Xu, 2010). 

 

 
 

Figure 1. General molecular structure of flavonoid (a) and carbohydrate (b) group. 
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2. MATERIALS AND METHODS  

 

 In the preparation of each extract, pandan and soybean materials were individually 

combined with 100 ml of water and heated to a temperature range of 60-70°C. The filtration 

procedure utilised Whatman filter paper no. 1, following which the resultant stock solution was 

preserved at a temperature of 4°C. Subsequently, approximately 200 ml of the crude extract 

was incrementally introduced to a vigorously stirred solution of 0.05 M tin chloride 

pentahydrate, with the solution being left to stand for a duration of 3 hours at ambient 

temperature. Over time, this mixture underwent a transformation into a gelatinous consistency, 

which was then subjected to dehydration in a conventional oven, resulting in the formation of 

a black precipitate. The calcination process was meticulously executed for 3 hours at 

temperatures of 700°C and 600°C for soybean and pandan-based experiments, respectively, 

with the objective of converting the precipitate into pure SnO2 NPs (Buniyamin et al., 2021). 

The analytical phase encompassed a diverse array of characterization methodologies. Initially, 

Fourier-transform infrared (FTIR) spectroscopy was applied to delineate the chemical bonds 

present, while X-ray diffraction (XRD) analysis was undertaken to elucidate the structural 

attributes of the nanoparticles. Moreover, the optical properties were scrutinised through UV-

diffuse reflectance spectroscopy (UV-DRS) analysis, utilising the Kubelka-Munk function for 

the calculation of the energy band gap, providing a comprehensive insight into the intrinsic 

properties of the synthesized SnO2 NPs. 

 

3. RESULTS AND DISCUSSION  

 

3.1. Probable reaction mechanism of SnO2 NPs 

 

 By considering the reaction mechanism based on the flavonoid group is described in 

references (Gawade et al., 2017; Bhosale et al., 2018; Ahmed et al., 2017), herein the 

functionality of the carbohydrate group is suggested as shown in Figure 2. For better clarity, the 

mechanism for carbohydrate group is presented in chair conformation. The mechanism is 

initiated with the addition of soybean extract into the stirring solution of the salt precursor 

solution of SnCl4. 5H2O that would lead to a chemical association. The carbohydrate molecules, 

possesses a hydroxyl group, would later form a bridging network with Sn4+ of the salt precursor. 

The tetravalent of Sn4+ cation is attached to four hydroxyl groups of two carbohydrate 

molecules and this networking keeps the molecules steadily as one unit by capping action. 

Notably, the change of phase from a clear brownish solution to the jelly-form evidences the 

aggressive capping action signifying the construction of the complex networking of Sn4+ cation. 

As time progress, more Sn4+ cation be capped by the hydroxyl groups. Later, the reduction Sn4+ 

to Sn0 occurs, and the SnO2 NPs is obtained after it has been calcined. 

 

 
 

Figure 2. Plausible reaction mechanism for the synthesis of SnO2 NPs 
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3.2. Fourier-transform Infrared (FTIR) Analysis 

 

The elucidation of biomolecules within pandan and soybean extracts has been affirmed 

through Fourier-transform infrared (FTIR) spectroscopy analysis. For pandan, the FTIR 

spectrum, as depicted in Figure 3(a), showcases a broad transmittance band spanning the range 

of 3514 to 3106 cm-1, indicative of the presence of hydroxyl (OH) groups. This is succeeded by 

a pronounced transmittance peak at 2924 cm-1, which signifies the stretching vibrations of the 

CH group. Additionally, the characteristic stretching vibrations of the CH3, carbonyl (C=O), 

and carbon-carbon double bond (C=C) functional groups are distinctly observed at 2841, 1730, 

and 1635 cm-1, respectively. The vibrational stretching of the C-OH group is identified at 1464 

cm-1. Furthermore, a notable transmittance peak at 1244 cm-1 signifies the presence of the C-O 

group, with the region from 1125 to 1009 cm-1 corroborating the existence of the ether (C-O-

C) group. Lastly, the stretching vibrations attributed to the =CH group, associated with aromatic 

compounds, are identified within the range of 927 to 732 cm-1 (Ali & Hawa, 2017). 

Conversely, the FTIR spectrum of untreated soybean, presented in Figure 3(b), confirms 

the presence of functional groups, particularly those associated with carbohydrates. A broad 

transmittance band observed at 3375 cm-1 denotes the stretching vibrations of the OH group. 

The presence of methylene (-CH2) and methyl (-CH3) groups, indicative of aliphatic saturated 

hydrocarbons (C-H), is evidenced by transmittance bands at 2929 and 2843 cm-1, respectively, 

arising from asymmetric and symmetric stretching vibrations. A sharp band at 1624 cm-1 

corresponds to the stretching vibrations of the carbonyl (C=O) group. Additionally, the peaks 

at 1418 and 1240 cm-1 are attributed to the stretching of OCH2 and CH aromatic groups, 

respectively. The bending vibrations of the NH group are indicated by the peak at 1148 cm-1, 

while the peak at 1063 cm-1 is representative of the C-O stretching pattern. Finally, the region 

spanning 723 to 560 cm-1 is associated with the CH2 stretching vibrations (Woumbo et al., 

2021).  

 

 
 

Figure 3. The FTIR spectrum for untreated pandan (a) and soybean (b) 

 

The Fourier-transform infrared (FTIR) spectra of SnO2 NPs synthesized from pandan and 

soybean extracts are illustrated in Figure 4 (a) and (b). The absence of peaks associated with 

the untreated pandan and soybean substantiates the effective capping and reduction processes 

facilitated by the biomolecules, culminating in the formation of SnO2 NPs as evidenced in the 

FTIR spectra. This transformation is characterised by a transmittance band spanning 762 to 605 

cm-1, which signifies the stretching vibrations of the Sn-O-Sn linkage, corroborating the 

formation of SnO2 NPs. Additionally, the detection of a distinct peak within the range of 1166 

(a) (b) 
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to 1073 cm-1 lends further support to the presence of SnO2. Meanwhile, the observation of the 

carbon dioxide (CO2) group within the spectral region of 1953 to 2210 cm-1 is deemed to be of 

minimal significance (Rahmi & Kurniawan, 2017; Buniyamin et al., 2023). 

 

 
 

Figure 4. The manifestation of functional groups for SnO2 NPs 

 

3.3. X-ray Diffraction (XRD) Analysis 

 

 The analysis of XRD diffraction peaks is shown in Figure 5. The primary diffraction peaks 

of the SnO2 NPs corresponding to (110), (101) and (211) planes with their respective 2θ angles 

at 27o, 34o and 51o is presented. These peaks can be attributed to the tetragonal rutile type 

structure as per JCPDS card no.01-077-0452, in complete agreement with previous reports 

(Kumari & Philip, 2015; Buniyamin et al., 2023; Ayeshamariam, 2013; Tammina et al., 2017). 

The crystalline size (D) of SnO2 NPs was calculated using Scherrer's formula (Eq. 1): 

 

D= kλ/(β Cos θ)  (1) 

 

in which D=Crystallite size (nm), λ= wavelength of the incident rays (1.54Å), k= Unknown 

shape factor, β= Full Width at Half Maximum value (radian) and θ= Position (radian), 

diffraction angle (Wicaksono et al, 2020).  

 The average crystallite size of SnO2 NPs synthesized from pandan extract, as calculated 

using the previously referenced equation, is determined to be 10.6 nm. In comparison, SnO2 

NPs produced from soybean extract exhibit a marginally smaller average size, measuring at 9.6 

nm. This variation in crystallite size underscores the efficacy of both biomolecule types that are 

the flavonoids and carbohydrate groups, as both capping and reducing agents within the 

synthesis process, evidenced by their contribution towards providing distinct diffraction peaks 

that affirm the formation of SnO2 NPs. Although the crude extracts contain a variety of 

hydroxylated biomolecules, it is posited that only those hydroxyl groups attached to aromatic 

or cyclic structures partake in the capping mechanism. Specifically, hydroxylated flavonoids 

and carbohydrate groups are highlighted for their significant compatibility and contribution, 

likely attributed to their inherent stability. This strategic stabilization of Sn4+ ions by the 

hydroxylated biomolecule networks is pivotal in directing the nucleation and subsequent 

growth phases of the nanoparticles, thereby enhancing their crystallinity and structural integrity 

(Madkour, 2018; Singh et al., 2015; Makarov et al., 2014). 
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Figure 5. The diffraction peaks of SnO2 NPs synthesized from pandan (a) and soybean (b) 

 

3.4. UV-Visible Diffuse Reflectance (UV-DRS) Analysis  
 

 Ultraviolet-diffuse reflectance spectroscopy (UV-DRS) analysis was undertaken to 

evaluate the reflectance properties inherent in the nanoparticles, aimed at elucidating their 

enhanced surface-to-volume ratio, which is instrumental in augmenting light scattering and 

optimizing light harvesting capabilities (Xinjuan et al., 2013). The resultant reflectance 

spectrum, as illustrated in Figure 6, exhibits a reflectance value of 82% for SnO2 NPs 

synthesized from pandan extract (a) and 76% for those derived from soybean extract (b). The 

absorption edges of both specimens are positioned within the visible light spectrum, specifically 

at 599 cm-1 and 699 cm-1, respectively. This positioning denotes the threshold wavelength 

beyond which the capacity to attain optimal reflectance is constrained, highlighting the spectral 

efficiency of the synthesized SnO2 NPs in light absorption and reflection (Buniyamin et al., 

2023). 

 

 
 

Figure 6. The reflectance percentage plotted from the analysis of UV-DRS 

 

Upon obtaining the reflectance results, the Kubelka-Munk function (Equation 2) was 

utilised to transmute the reflectance values into band gap energy estimations (Senthilkumar et 

al., 2012). This process entailed graphing the square of the Kubelka-Munk function values 
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against the photon energy and extrapolating the linear portion of the resultant plot, as depicted 

in Figures 7(a) and (b). This methodological approach facilitates a quantitative assessment of 

the optical band gap energy, providing insights into the electronic structure and photonic 

properties of the synthesized materials. 

 

F(R) = (1-R)2/ 2R = k/s   (2) 

 

The determined energy band gaps for SnO2 NPs synthesized from pandan and soybean 

extracts are 4.86 eV and 3.45 eV, respectively. These values render the nanoparticles suitable 

for utilization in photocatalytic reactions, a finding that is in alignment with earlier research 

(Buniyamin et al., 2023). Notably, the SnO2 NPs generated through the mediation of pandan 

extract exhibit an energy band gap that surpasses the typical range for bulk SnO2, 

conventionally acknowledged to be around 3.6 eV. This elevation in the energy band gap is 

presumably due to an increased defect density which is associated with electrical conductivity, 

thereby leading to an expansion of the band gap value (Zulfiqar et al., 2017). While the energy 

band gap of SnO2 NPs derived from soybean closely aligns with the theoretical expectation of 

3.45 eV, a minor reduction may be observed. Such a variation could be ascribed to a series of 

factors including the limitations in carrier concentration, the presence of unoccupied electronic 

states, and the emergence of homogeneous oxygen vacancies (Ayeshamariam et al., 2014; Yang 

et al., 2017). The elucidation of these energy band gaps offers an optimistic perspective for the 

application of SnO2 NPs, synthesized from both pandan and soybean, in photocatalytic 

processes. This optimism is predicated on the potential for these nanoparticles to facilitate the 

generation of high levels of photo-induced electrons and holes. 

 

 
 

Figure 7. The energy band gap for SnO2 NPs synthesized from pandan (a) and soybean (b) 

  

4. CONCLUSION  

 

In conclusion, the successful fabrication of SnO2 NPs was accomplished using pandan 

and soybean extracts. The biomolecules within these extracts, particularly the flavonoids and 

carbohydrate groups, proved to be effective agents for the reduction and capping actions 

integral to the biosynthesis process. Although these biomolecules were not isolated in their pure 

forms, the employment of their crude extracts still efficiently facilitated the biosynthesis 

mechanism, leading to the production of pure SnO2 NPs. This highlights the simplicity and 

efficacy of the method. The presence of key functional groups, specifically SnO2 and Sn-O-Sn, 

was verified through Fourier-transform infrared (FTIR) spectroscopy. X-ray diffraction (XRD) 

analysis further elucidated the tetragonal rutile structure of the nanoparticles, with notable 

(a) (b) 
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planes (110), (101), and (211) observed at 27°, 34°, and 51°, respectively. The derived band 

gap values of 4.86 eV and 3.45 eV for SnO2 NPs from pandan and soybean, as determined by 

diffuse reflectance spectroscopy (DRS) analysis, highlight their potential efficacy in 

photocatalytic applications. Future research directions should encompass a thorough 

exploration of the scalability, stability, reproducibility, and longevity of the biosynthesized 

SnO2 NPs, aiming to further elucidate their capabilities and cement a robust framework for their 

practical deployment in diverse settings. Additionally, investigating the use of isolated 

hydroxylated flavonoids and carbohydrate groups contrasting with this study reliance on crude 

extracts could provide valuable insights. Such an inquiry would facilitate a comparative 

analysis, shedding light on the precise impact of these bio-templates on the characteristics of 

the resultant SnO2 NPs, thereby offering a clearer understanding of the biosynthesis process 

efficiency and potential enhancements. 
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