Computational Analysis of Fractional Systems of Korteweg-de Vries Equations Using Elzaki Projected Differential Transform Method

Authors

  • Sunday Gbodogbe Department of Mathematical Sciences, Indiana University, Indianapolis, USA
  • Adedapo Loyinmi Department of Mathematics, Tai Solarin University of Education, Ijebu-ode, Nigeria

DOI:

https://doi.org/10.37134/

Keywords:

Korteweg-de Vries, Elzaki Projected Differential Transform Method, Nonlinear partial differential equations, Numerical simulations, Exact Solution

Abstract

The study investigates the application of the Elzaki Projected Differential Transform Method (EPDTM) to fractional-order nonlinear Korteweg-de Vries (KdV) equations, which are fundamental in describing various nonlinear wave phenomena in physics and engineering. The EPDTM is utilized to derive approximate solutions for these complex systems, leveraging its ability to handle both linear and nonlinear operators effectively. Through comprehensive numerical simulations and comparisons with exact solutions, we demonstrate the method's efficacy in capturing the intricate dynamics of fractional-order systems. The results underscore EPDTM's accuracy, convergence, and computational efficiency, establishing it as a valuable tool for studying and analyzing nonlinear partial differential equations with fractional derivatives. This research contributes to advancing computational methods for nonlinear dynamics and underscores the potential of EPDTM in broader applications across diverse fields of science and engineering.

Downloads

Download data is not yet available.

References

[1]. Gardner, C. S., Greene, J. M., Kruskal, M. D., & Miura, R. M. (1967). Method for solving the Korteweg-deVries equation. Physical review letters, 19(19), 1095.

[2]. Jafari, H., Jassim, H. K., Baleanu, D., & Chu, Y. M. (2021). On the approximate solutions for a system of coupled Korteweg–de Vries equations with local fractional derivative. Fractals, 29(05), 2140012.

[3]. Park, C., Nuruddeen, R. I., Ali, K. K., Muhammad, L., Osman, M. S., & Baleanu, D. (2020). Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg–de Vries equations. Advances in Difference Equations, 2020, 1-12.

[4]. Xiang, T. (2015). A summary of the Korteweg-de Vries equation. Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872.

[5]. Korteweg, D. J., & De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443.

[6]. Rizvi, S. T. R., Seadawy, A. R., Ashraf, F., Younis, M., Iqbal, H., & Baleanu, D. (2020). Lump and interaction solutions of a geophysical Korteweg–de Vries equation. Results in Physics, 19, 103661.

[7]. Cheemaa, N., Seadawy, A. R., Sugati, T. G., & Baleanu, D. (2020). Study of the dynamical nonlinear modified Korteweg–de Vries equation arising in plasma physics and its analytical wave solutions. Results in Physics, 19, 103480.

[8]. Kumar, S., Kumar, A., Abbas, S., Al Qurashi, M., & Baleanu, D. (2020). A modified analytical approach with existence and uniqueness for fractional Cauchy reaction–diffusion equations. Advances in Difference Equations, 2020(1), 28.

[9]. Vázquez, L., & Jafari, H. (2013). Fractional calculus: theory and numerical methods. Open Physics, 11(10), 1163-1163.

[10]. Wu, Y., Geng, X., Hu, X., & Zhu, S. (1999). A generalized Hirota–Satsuma coupled Korteweg–de Vries equation and Miura transformations. Physics Letters A, 255(4-6), 259-264.

[11]. Abazari, R., & Abazari, M. (2012). Numerical simulation of generalized Hirota–Satsuma coupled KdV equation by RDTM and comparison with DTM. Communications in Nonlinear Science and Numerical Simulation, 17(2), 619-629.

[12]. Gbodogbe, S. O. (2025). Harmonizing epidemic dynamics: A fractional calculus approach to optimal control strategies for cholera transmission. Scientific African, 27, e02545.

[13]. Akinyemi, L., & Huseen, S. N. (2020). A powerful approach to study the new modified coupled Korteweg–de Vries system. Mathematics and Computers in Simulation, 177, 556-567.

[14]. Lawal, O. W., & Loyinmi, A. C. (2011). The effect of magnetic field on MHD viscoelastic flow and heat transfer over a stretching sheet. Pioneer J. Adv. Appl. Math, 3(2), 83-90.

[15]. Idowu, K. O., & Loyinmi, A. C. (2023). THE ANALYTIC SOLUTION OF NON-LINEAR BURGERS–HUXLEY EQUATIONS USING THE TANH METHOD. Al-Bahir journal for Engineering and Pure Sciences, 3(1), 8.

[16]. Loyinmi, A. C., & Lawal, O. W. (2011). The asymptotic solution for the steady variable-viscosity free convection flow on a porous plate. Journal of the Nigerian Association of Mathematical Physics, 19.

[17]. Oluwafemi, W. L., Adedapo, C. L., & Sowunmi, O. S. (2017). Homotopy perturbation algorithm using laplace transform for linear and nonlinear ordinary delay differential equation. Journal of the Nigerian Association of Mathematical Physics, 41, 27-34.

[18]. Loyinmi, A. C., & Akinfe, T. K. (2020). Exact solutions to the family of Fisher's reaction‐diffusion equation using Elzaki homotopy transformation perturbation method. Engineering Reports, 2(2), e12084.

[19]. Lawal, O. W., Loyinmi, A. C., & Ayeni, O. B. (2019). Laplace homotopy perturbation method for solving coupled system of linear and nonlinear partial differential equation. J. Math. Assoc. Niger, 46(1), 83-91.

[20]. Lot, S., Lawal, W. O., & Loyinmi, A. C. (2024). Magnetic Field’s Effect on Two-phase Flow of Jeffrey and Non-Jeffrey Fluid With Partial Slip and Heat Transfer in an Inclined Medium. Al-Bahir Journal for Engineering and Pure Sciences, 4(1), 8.

[21]. Loyinmi, A. C., & Akinfe, T. K. (2020). An algorithm for solving the Burgers–Huxley equation using the Elzaki transform. SN Applied sciences, 2(1), 7.

[22]. Lawal, O. W., Loyinmi, A. C., & Hassan, A. R. (2019). Finite difference solution for Magneto hydrodynamics thin film flow of a third grade fluid down inclined plane with ohmic heating. J. Math. Assoc. Niger, 46(1), 92-97.

[23]. Mohammadi, F., Moradi, L., Baleanu, D., Jajarmi, A.: A hybrid functions numerical scheme for fractional optimal control problems: application to nonanalytic dynamic systems. J. Vib. Control 24, 5030–5043 (2018)

[24]. Lawal, O. W., Loyimi, A. C., & Erinle-Ibrahim, L. M. (2018). Algorithm for solving a generalized Hirota-Satsuma coupled KDV equation using homotopy perturbation transform method. Science World Journal, 13(3), 23-28.

[25]. Loyinmi, A. C., Sanyaolu, M. D., & Gbodogbe, S. (2025). Exploring the Efficacy of the Weighted Average Method for Solving Nonlinear Partial Differential Equations: A Study on the Burger-Fisher Equation. EDUCATUM Journal of Science, Mathematics and Technology, 12(1), 60-79.

[26]. Lawal, O. W., & Loyinmi, A. C. (2012). Magnetic and porosity effect on MHD flow of a dusty visco-elastic fluid through horizontal plates with heat transfer. J. Niger. Assoc. Math. Phys, 21, 95-104.

[27]. Loyinmi, A. C., Oredein, A. I., & Prince, S. U. (2018). Homotopy adomian decomposition method for solving linear and nonlinear partial differential equations. Tasued J. Pure Appl. Sci, 1, 254-260.

[28]. Idowu, K. O., Akinwande, T. G., Fayemi, I., Adam, U. M., & Loyinmi, A. C. (2023). Laplace Homotopy Perturbation Method (LHPM) for solving systems of N-dimensional non-linear partial differential equation. Al-Bahir Journal for Engineering and Pure Sciences, 3(1), 11-27.

[29]. Loyinmi, A. C., & Idowu, K. O. (2023). Semi-analytic approach to solving rosenau-hyman and korteweg-de vries equations using integral transform. Tanzania Journal of Science, 49(1), 26-40.

[30]. Lawal, O. W., & Loyimi, A. C. (2019). Application of new iterative method for solving linear and nonlinear initial boundary value problems with non local conditions. Science World Journal, 14(3), 100-104.

[31]. Maturi, D. A. (2012). Homotopy perturbation method for the generalized Hirota-Satsuma coupled KdV equation. Applied Mathematics, 3(12), 1983-1989.

[32]. Loyinmi, A. C., Erinle-Ibrahim, L. M., & Adeyemi, A. E. (2017). The new iterative method (NIM) for solving telegraphic equation. J. Niger. Assoc. Math. Phys, 43, 31-36.

[33]. Lawal, O. W., Loyinmi, A. C., & Arubi, D. A. (2017). Approximate solutions of higher dimensional linear and nonlinear initial boundary valued problems using new iterative method. J. Niger. Assoc. Math. Phys, 41, 35-40.

[34]. Loyinmi, A. C., Lawal, O. W., & Sottin, D. O. (2017). Reduced differential transform method for solving partial integro-differential equation. J. Niger. Assoc. Math. Phys, 43, 37-42.

[35]. Loyinmi, A. C., & Lawal, O. W. (2011). The asymptotic solution for the steady variable-viscosity free convection flow on a porous plate. Journal of the Nigerian Association of Mathematical Physics, 19.

[36]. Gokdogan, A., Yildirim, A., & Merdan, M. (2012). Solving coupled-KdV equations by differential transformation method. World Appl. Sci. J, 19(12), 1823-1828.

[37]. Jafari, H., & Firoozjaee, M. A. (2010). Homotopy analysis method for solving KdV equations. Surveys in Mathematics and its Applications, 5, 89-98.

[38]. Lu, D., Suleman, M., Ramzan, M., & Ul Rahman, J. (2021). Numerical solutions of coupled nonlinear fractional KdV equations using He’s fractional calculus. International Journal of Modern Physics B, 35(02), 2150023.

[39]. Jafari, H., Nazari, M., Baleanu, D., & Khalique, C. M. (2013). A new approach for solving a system of fractional partial differential equations. Computers & Mathematics with Applications, 66(5), 838-843.

[40]. Elzaki, T. M. (2011). On the connections between Laplace and Elzaki transforms. Advances in Theoretical and Applied mathematics, 6(1), 1-11.

Downloads

Published

2026-01-04

How to Cite

Gbodogbe, S., & Loyinmi, A. (2026). Computational Analysis of Fractional Systems of Korteweg-de Vries Equations Using Elzaki Projected Differential Transform Method. EDUCATUM Journal of Science, Mathematics and Technology, 13(1), 1-23. https://doi.org/10.37134/