Effect of ammonia/gallium ratio and growth temperature towards the surface morphology of semi-polar GaN grown on m-plane sapphire via MOCVD

Kesan nisbah ammonia/gallium dan suhu pertumbuhan terhadap morfologi permukaan GaN semi-polar yang tumbuh pada safir m-pesawat melalui MOCVD

  • Omar Al-Zuhairi Nanotechnology Research Center, Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Abdullah Haaziq Ahmad Makinudin Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • Ahmad Shuhaimi Low-Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • Adreen Azman Low-Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • Anas Kamarudzaman Low-Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • Anis Nazihah Mat Daud Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Estabraq Talib Abdullah Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
Keywords: Gallium nitride, m-plane, MOCVD, Semi-polar, Surface evolution

Abstract

A single-crystalline semi-polar gallium nitride (11-22) was grown on m-plane (10-10) sapphire substrate by metal organic chemical vapor deposition. Three-step approach was introduced to investigate the grain size evolution for semi-polar (11-22) GaN. Such approach was achieved due to the optimized gallium to ammonia ratio and temperature variations, which led to high quality (11-22) oriented gallium nitride epilayers. The full width at half maximum values along (-1-123) and (1-100) planes for the overgrowth temperature of 1080°C were found to be as low as 0.37° and 0.49°, respectively. This was an indication of the enhanced coalescence and reduction in root mean square roughness as seen by atomic force microscopy. Surface analysis via atomic force microscopy indicated the orientation towards semi-polar plane. Field emission scanning electron microscopy analysis further indicates that higher temperature of 1080°C during the deposition of the overgrowth promoted closely packed surface coalescence. Room temperature Raman revealed that the overgrowth temperature of 1080°C portrayed compressive strain free as compared to other overgrowth temperature. Based on these results, the promising overgrowth temperature of 1080°C can be further utilized in future work for optoelectronics devices.

Downloads

Download data is not yet available.

Author Biography

Omar Al-Zuhairi, Nanotechnology Research Center, Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia

References

Q.S. Paduano, D.W. Weyburne, D.H. Tomich, Growth and properties of m-plane GaN on m-plane sapphire by metal organic chemical vapor deposition, Journal of Crystal Growth, 367 (2013) 104-109.

J.-H. Lee, S.-H. Han, K.-R. Song, S.-N. Lee, Optical and electrical improvements of semipolar (11− 22) GaN-based light emitting diodes by Si doping of n-GaN template, Journal of Alloys and Compounds, 598 (2014) 85-88.

A. Kamarudzaman, A.S.B.A. Bakar, A. Azman, A.-Z. Omar, A. Supangat, N.A. Talik, Positioning of periodic AlN/GaN multilayers: Effect on crystalline quality of a-plane GaN, Materials Science in Semiconductor Processing, 105 (2020) 104700.

J. Jang, K. Lee, J. Hwang, J. Jung, S. Lee, K. Lee, B. Kong, H. Cho, O. Nam, Improvement of crystal quality and optical property in (11− 22) semipolar InGaN/GaN LEDs grown on patterned m-plane sapphire substrate, Journal of Crystal Growth, 361 (2012) 166-170.

S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, M. Kneissl, Orientation control of GaN and grown on sapphire by metal-organic vapor phase epitaxy, Journal of Crystal Growth, 312 (2010) 2171-2174.

F. Tendille, P. De Mierry, P. Vennéguès, S. Chenot, M. Teisseire, Defect reduction method in (11-22) semipolar GaN grown on patterned sapphire substrate by MOCVD: Toward heteroepitaxial semipolar GaN free of basal stacking faults, Journal of Crystal Growth, 404 (2014) 177-183.

P. Waltereit, O. Brandt, A. Trampert, H. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature, 406 (2000) 865-868.

A. Anuar, A.H.A. Makinudin, O. Al-Zuhairi, N. Chanlek, A.S.A. Bakar, A. Supangat, Growth of Semi-Polar (112¯ 2) GaN on m-plane Sapphire via In-Situ Multiple Ammonia Treatment (I-SMAT) Method, Vacuum, (2020) 109208.

Y. Won, B. So, S. Woo, D. Lee, M. Kim, K. Nam, S. Im, K.B. Shim, O. Nam, Effect of nitridation on the orientation of GaN layer grown on m-sapphire substrates using hydride vapor phase epitaxy, Journal of Ceramic Processing Research, 15 (2014) 61-65.

A.H.A. Makinudin, O. Al-Zuhairi, A. Anuar, M.Z. Zainorin, A.S.A. Bakar, S. DenBaars, A. Supangat, Impact of Crystallinity Towards the Performance of Semi-Polar (11-22) GaN UV Photodetector, Materials Letters, (2020) 129244.

Z. Wu, A. Fischer, F. Ponce, B. Bastek, J. Christen, T. Wernicke, M. Weyers, M. Kneissl, Structural and optical properties of nonpolar GaN thin films, Applied Physics Letters, 92 (2008) 171904.

T. Wei, Q. Hu, R. Duan, X. Wei, Z. Huo, J. Wang, Y. Zeng, G. Wang, J. Li, Growth of (101¯ 3¯) semipolar GaN on m-plane sapphire by hydride vapor phase epitaxy, Journal of Crystal Growth, 311 (2009) 4153-4157.

F. Scholz, Semipolar GaN grown on foreign substrates: a review, Semiconductor Science and technology, 27 (2012) 024002.

A. Azman, A. Shuhaimi, A.-Z. Omar, A. Kamarundzaman, M.I.M.A. Khudus, A. Ariff, M. Samsudin, N. Zainal, S. Abd Rahman, Metal organic chemical vapor deposition of m-plane GaN epi-layer using a three-step approach towards enhanced surface morphology, Thin Solid Films, 667 (2018) 48-54.

M. Araki, N. Mochimizo, K. Hoshino, K. Tadatomo, Direct growth of a-plane GaN on r-plane sapphire substrate by metalorganic vapor phase epitaxy, Japanese Journal of Applied Physics, 46 (2007) 555.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, M. Kneissl, Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells, Semiconductor science and technology, 27 (2012) 024014.

A.-Z. Omar, A.S.B.A. Bakar, A.H.A. Makinudin, M.I.M.A. Khudus, A. Azman, A. Kamarundzaman, A. Supangat, Effect of low NH 3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD, Superlattices and Microstructures, (2018).

T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Characterization of planar semipolar gallium nitride films on spinel substrates, Japanese journal of applied physics, 44 (2005) L920.

N.P. Hylton, P. Dawson, C.F. Johnston, M.J. Kappers, J.L. Hollander, C. McAleese, C.J. Humphreys, Optical and microstructural properties of semi‐polar (11‐22) InGaN/GaN quantum well structures, physica status solidi (c), 6 (2009) S727-S730.

K.-R. Song, D.-S. Oh, S.-N. Lee, Optical and crystal improvements of semipolar (11-22) GaN/m-sapphire by in-situ thermal etching process, Current Applied Physics, 13 (2013) 1643-1646.

T. Wernicke, C. Netzel, M. Weyers, M. Kneissl, Semipolar GaN grown on m‐plane sapphire using MOVPE, physica status solidi (c), 5 (2008) 1815-1817.

Q. Sun, J. Han, Heteroepitaxy of nonpolar and semipolar GaN, in: GaN and ZnO-based Materials and Devices, Springer, 2012, pp. 1-27.

Q. Zheng, R. Reddy, Mechanism of in situ formation of AlN in Al melt using nitrogen gas, Journal of materials science, 39 (2004) 141-149.

F. Yan, H. Gao, H. Zhang, G. Wang, F. Yang, J. Yan, J. Wang, Y. Zeng, J. Li, Temperature dependence of the Raman-active modes in the nonpolar a-plane GaN film, Journal of applied physics, 101 (2007) 3506.

S. Mukundan, L. Mohan, G. Chandan, B. Roul, S. Krupanidhi, Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy, Journal of Applied Physics, 116 (2014) 204502.

T.S. Krishna, N. Aggarwal, G.A. Reddy, P. Dugar, M. Mishra, L. Goswami, N. Dilawar, M. Kumar, K. Maurya, G. Gupta, Probing the correlation between structure, carrier dynamics and defect states of epitaxial GaN film on (112 [combining macron] 0) sapphire grown by rf-molecular beam epitaxy, Rsc Advances, 5 (2015) 73261-73267.

A.H.A. Makinudin, A.-Z. Omar, A.S.A. Bakar, A. Anuar, A. Supangat, Disilane Doping of Semi-Polar (11-22) n-GaN: The Impact of Terrace-Like Evolution toward the Enhancement of the Electrical Properties, Thin Solid Films, (2020) 138489.

A.-Z. Omar, A. Shuhaimi, A.H.A. Makinudin, M.I.A. Khudus, A. Supangat, Embedded AlN/GaN multi-layer for enhanced crystal quality and surface morphology of semi-polar (11-22) GaN on m-plane sapphire, Materials Science in Semiconductor Processing, 86 (2018) 1-7.

A. Anuar, A.H.A. Makinudin, O. Al-Zuhairi, A.S.A. Bakar, A. Supangat, Crystal quality and surface structure tuning of semi-polar (11–22) GaN on m-plane sapphire via in-situ multiple ammonia treatment, Thin Solid Films, 697 (2020) 137817.

A.H. Ahmad Makinudin, A.-Z. Omar, A. Anuar, A.S.A. Bakar, S.P. DenBaars, A. Supangat, Impact of a Strained Periodic Multilayer on the Surface and Crystal Quality of a Semipolar (11–22) GaN Template, Crystal Growth & Design, (2019).

S. Xu, J. Zhang, Y. Cao, X. Zhou, J. Xue, Z. Lin, J. Ma, F. Bao, Y. Hao, Improvements in (112̅2) semipolar GaN crystal quality by graded superlattices, Thin Solid Films, 520 (2012) 1909-1912.

Published
2021-02-22
How to Cite
Al-Zuhairi, O., Ahmad Makinudin, A. H., Shuhaimi, A., Azman, A., Kamarudzaman, A., Mat Daud, A. N., & Abdullah, E. T. (2021). Effect of ammonia/gallium ratio and growth temperature towards the surface morphology of semi-polar GaN grown on m-plane sapphire via MOCVD. EDUCATUM Journal of Science, Mathematics and Technology, 8(1), 6-15. https://doi.org/10.37134/ejsmt.vol8.1.2.2021