The Structural Properties of The Power Graph of Symmetric Groups
DOI:
https://doi.org/10.37134/ejsmt.vol12.sp.5.2025Keywords:
Power graph of group, symmetric group, cyclic group, non-cyclic groupAbstract
This study investigates the power graphs of the symmetric groups Sn for 3<n<6. In a power graph, vertices represent group elements, and edges connect vertices if one element is a power of the other. The study identifies key structural patterns, including over 250 distinct subgraphs for . Specifically, complete subgraphs , correspond to cyclic subgroups of prime power orders. In contrast, incomplete subgraphs highlight the non-cyclic nature of symmetric groups for n>4, as they cannot be generated by a single element. This research provides a systematic characterization of power graphs for small symmetric groups, offering new insights into their combinatorial structure. Additionally, it contributes to the existing literature by demonstrating how the complexity of power graphs increases with , revealing intricate power relations and the presence of both cyclic and non-cyclic structural components.
Downloads
References
[1] Cameron, P. J., & Ghosh, S. (2011). The power graph of a finite group. In Discrete Mathematics, 311(13), 220–1222. doi: 10.1016/j.disc.2010.02.011.
[2] Tamizh Chelvam, T., & Sattanathan, M. (2013). Power graph of finite abelian groups. Algebra and Discrete Mathematics, 16(1), 33–41
[3] Chattopadhyay, S., & Panigrahi, P. (2014). Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups. Algebra and Discrete Mathematics, 18(1), 42–49. https://api.elsevier.com/content/abstract/scopus_id/84919769281
[4] Asmarani, E. Y., Syarifudin, A. G., Wardhana, I. G. A. W., & Switrayni, N. W. (2022). The Power Graph of a Dihedral Group. Eigen Mathematics Journal, 4(2), 80–85. doi: 10.29303/emj.v4i2.117.
[5] Mehranian, Z., Gholami, A., & Ashrafi, A. R. (2016). A note on the power graph of a finite group. International Journal of Group Theory, 5(1), 1-10. doi: 10.1007/s11587-020-00520-w.
[6] Cameron, P. J., & Jafari, S. H. (2020). On the connectivity and independence number of power graphs of groups. Graphs and Combinatorics, 36(3), 895-904. doi:10.1007/s00373-020-02162-z.
[7] Doostabadi, A., & Farrokhi D. Ghouchan, M. (2015). On the connectivity of proper power graphs of finite groups. Communications in Algebra, 43(10), 4305-4319. doi: 10.1080/00927872.2014.945093.
[8] Panda, R. P., & Krishna, K. V. (2018). On connectedness of power graphs of finite groups. Journal of Algebra and its Applications, 17(10), 1850184. doi: 10.1142/S0219498818501840.
[9] Wilson, R. J. (1996). Introduction to Graph Threory. Longman Malaysia. https://www.ptonline.com/articles/how-to-get-better-mfi-results
[10] Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra. John Wiley & Sons, Inc.
[11] Milne, J. S. (2010). Group Theory. In Mathematics. Elsevier. doi: 10.1016/b978-0-12-240801-4.50007-8.
[12] Akers, S. B., & Krishnamurthy, B. (1989). A group-theoretic model for symmetric interconnection networks. IEEE transactions on Computers, 38(4), 555-566. doi: 10.1109/12.21148.
[13] Kelarev, A. V., & Quinn, S. J. (2000). A combinatorial property and power graphs of groups. Contributions to general algebra, 12(58), 3-6.
[14] Acharyya, A., & Williams, A. (2020). Power Graphs of Finite Group. arXiv preprint arXiv:2012.02236. http://arxiv.org/abs/2012.02236
[15] Chakrabarty, I., Ghosh, S., & Sen, M. K. (2009, June). Undirected power graphs of semigroups. In Semigroup Forum, 78, 410-426. Springer-Verlag. doi: 10.1007/s00233-008-9132-y.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ika Metiza Maris, Rawdah Adawiyah Tarmizi, Nor Hafizah Md Husin Md Husin

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

