Etching Time Effect on Photoluminescence, Porosity, Surface Morphology and Conductivity of Porous Silicon
Keywords:
porous silicon, chemical etching, photoluminescence, energy gap, conductivityAbstract
Recently, porous silicon (PS) gains a lot of research interest with its potential applications in optoelectronics, flat panel displays technology, and chemical sensor. In this work, PS was chemically etched on p-type silicon (Si) wafer by hydrofluoric acid (HF) with 40% nitric acid (HNO3) concentration at different etching time. The PS has porosity dependent on etching time in the range (38-60) % that gives orange-red photoluminescence (PL) between 657 nm to 661 nm. The PL intensity increases and the peak wavelength shows slight blue shift as etching time increases. The energy gap obtained are higher than pure Si (1.11eV). Meanwhile, the conductivity of the PS decreases as the porosity and energy gap increase.
Downloads
References
Lehmann, V., Gosele, U. 1991. Porous silicon formation: A quantum wire effect. Applied Physics Letters 58:
856-858.
Canham, L.T. 1990. Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers. Applied Physics Letter 57:1046-1048.
Saucedo, R.O., Lopez, C.V., Calleja, W., Allred, D.D., Falcony. C. 1999. A rotating electrochemical cell to prepare porous silicon with different surface structures. Thin Solid Films 338:100-104.
Malinovska, D. D., Tzolov, M., Tzenov, N., Nesheva, D. 1997. Electrical, photoelectrical and electroluminescent properties of porous Si–c-Si heterojunctions. Thin Solid Films 297: 285-290.
Fauchet, P.M., Tsybeskov, L., Peng, C., Duttagupta, S.P., von Behren, J., Kostoulas, Y., Vandyshev, J.M.V.,
Hirschman, K.D. 1995. Light-emitting porous silicon: materials science, properties and device applications.
IEEE Journal of Selected Topics in Quantum Electronics 1: 1126-1139.
Kolasinski, K.W. 2003. The mechanism of Si etching in fluoride solutions. Physical Chemistry Chemical Physics 5:1270.
Kulkarni, M.S. and Erk, H.F. 2000. Acid-Based Etching of Silicon Wafers: Mass-Transfer and Kinetic Effects. Journal of the Electrochemical Society 147: 176-188.
Mortezaali, A., Sani, S.R., Jooni, F.J. 2009. Correlation between Porosity of Porous Silicon and Optoelectronic
Properties. Journal of Non-Oxide Glasses. 1: 293 – 299.
Kern, W. 1993. Overview and Evolution of Semiconductor Wafer Contamination and Cleaning Technology. In
Handbook of Semiconductor Wafer Cleaning Technology, ed. W. Kern, pp 3-57. Park Ridge, New Jersey: Noyes Publishing.
Guidoin, R., King, M., Marceau, D., Cardou, A. 1987. Textile arterial prosthesis: Is water permeability equivalent to porosity. Journal of Biomedical Materials Research 21: 65-87.
Thompson, A.C. and Vaughan, D. 2001. X-ray properties of the Element. Center for X-ray optics advanced light source: X-ray Data Booklet Second edition. University of California: Lawrence Berkeley National Laboratory
Vasquez, A.M.A., Rodriguez, G.A., Salgado, G.G., Paredes, G.R., Sierra R.P. 2007. FTIR and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions. Revista Mexicana De Fisica 53: 431-435
Malinovska, D. D., Tzolov, M., Tzenov, N., Nesheva, D. 1997. Electrical, photoelectrical and electroluminescent properties of porous Si–c-Si heterojunctions. Thin Solid Films 297: 285-290.
Sailor, M.J. and Lee, E.J. 1997. Surface chemistry of Luminescent Silicon Nanocrystallites. Advanced Material.
9:783-793
Bhagavannarayana, G., Sharma, S.N., Sharma, R.K., Lakshmikumar, S.T. 2006. A comparison of the properties
of porous silicon formed on polished and textured (1 0 0) Si: High resolution XRD and PL. Materials Chemistry
and Physics 97:442–447.
Berhane, S., Kauslarich, S.M., Nishimura, K., Smith, R.L., Davis, J.E., Lee, H.W.H., Olsin, M.L.S., Chase, L.L. 1993. Investigation of colloidal Si prepared from porous silicon. Materials Research Society Symposium Proceedings 298: 99- 102.
Lockwood, D.J., Aers, G.C., Allard, L.B., Bryskieicz, B., Charbonneau, S., Houghton, D.C., McCaffrey, J.P.,Wang, A. 1992. Optical properties of porous silicon. Canadian Journal of Physics 70:1184-1193.
Takasuka, E. and Kamei, K. 1994. Microstructure of porous silicon and its correlation with photoluminescence.
Applied Physics Letters 65: 484-486.
Prokes, S., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E., Searson, P.C. 1992. SiHx excitation: An alternate mechanism for porous Si photoluminescence. Physical Reviews B 45:13788-13791
Prokes, S.M. 1993. Study of the luminescence mechanism in porous silicon structures. Journal of Applied Physics 73:407.
Stolyarova, S., Cherian, S., Raiteri, R., Zeravik, J., Skladal, P., Nemirovsky, Y. 2008. Composite porous siliconcrystalline silicon cantilevers for enhanced biosensing. Sensors and Actuators B 131:509–515.
Nash, K.J., Calcott, P.D.J., Canham, L.T., Needs, R.J. 1995. Spin-orbit interaction, triplet lifetime, and finestructure
splitting of excitons in highly porous silicon. Physical Reviews B 51:17698-17707.
Ngan, M.L., Lee, K.C., Cheah, K.W. 2000. Photochemical Etching of Silicon. Journal of Porous Materials 7: 41–45.
Anderson, B.L. and Anderson, R.L. 2005. Current Flow in Homogeneous Semiconductor. In Fundamentals of
Semiconductor Devices, pp111-155.New York: The McGraw-Hill Companies.