Synthesis and Evaluation of Alkoxy-Substituted Thiourea Derivatives as Antifouling Agents in Marine Ecosystem Interests

Authors

  • Wan Mohd Khairul Wan Mohamed Zin Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Adibah Izzati Daud Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02100, Arau, Perlis, Malaysia
  • Sze Ee Sylvia Voon Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Chiong Hwee Hii Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Noraznawati Ismail Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mauricio F. Erben Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 N° 1465, La Plata 1900, Argentina

DOI:

https://doi.org/10.37134/jsml.vol13.2.8.2025

Keywords:

alkoxy-thiourea, anti-fouling, spectroscopic, thermal analysis

Abstract

The incorporation of alkoxy-substituted chain into thiourea moiety has attracted considerable interest in recent years due to its promising antimicrobial and antibacterial activities, making them potential candidates for antifouling applications. In this study, two new alkoxy-substituted thiourea derivatives, namely; N-(4-(octyloxy)phenyl)-N’-(4-trifluoromethylbenzoyl)thiourea (3a) and N-(4-(octyloxy)phenyl)-N’-(4-cyanobenzoyl)thiourea (3b) were designed, synthesized, and evaluated for antifouling properties. The compounds were structurally and physiochemically characterized using ¹H and ¹³C NMR spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, UV–visible spectroscopy, and thermogravimetric analysis (TGA). In turn, antifouling activities were assessed against Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli through preventive and detachment assays. Notably, compound 3b exhibited strong antifouling performance, achieving up to 94.56% biofilm reduction in the preventive assay, due to the presence of the electron-withdrawing cyano (–CN) substituent. These findings highlight the potential of alkoxy-substituted thiourea derivatives as effective antifouling agents, warranting further exploration for use in fouling-release applications.

 

Downloads

Download data is not yet available.

References

Adam F, Fatihah NN, Ameram N, Subramaniam S, Mubarrakh SA. (2016). The synthesis and characterisation of 2-methyl-N-((4-methylpyridine-2-yl) carbamothiol) benzamide: Its preparation with antibacterial study. Journal of Physical Science, 27(2), 83-101. doi:10.21315/jps2016.27.2.7

Ali MA, Kutlu E, Altınkaya R, Yavuz O, Emen FM. (2025). Antibacterial activity of hexagonal boron nitride modified with thiourea derivative. Journal of Molecular Structure, 142928. doi:10.1016/j.molstruc.2025.142928

Carrier AJ, Carve M, Shimeta J, Walker TR, Zhang X, Oakes KD, Jha KC, Charlton T and Stenzel MH. (2023). Transitioning towards environmentally benign marine antifouling coatings. Frontiers in Marine Science, 10, 1175270. doi:10.3389/fmars.2023.1175270

Chowdhury A, Majumdar D, Dutta M, Bhattacharya SK. (2025). Comparative photoelectrochemical study of oligomeric S-Heptazines nanomaterials derived from partial thermal decompositions of urea & thiourea precursors. Materials Today Catalysis, 10, 100112. doi:10.1016/j.mtcata.2025.100112

Díaz M, Palop JA, Sanmartín C, Lizarraga E. (2017). Thermal stability and decomposition of urea, thiourea and selenourea analogous diselenide derivatives. Journal of Thermal Analysis and Calorimetry, 127, 1663-1674. doi:10.1007/s10973-016-5645-x

Farzanfar J, Ghasemi K, Rezvani AR, Delarami HS, Ebrahimi A, Hosseinpoor H, Eskandari A, Rudbari HA, Bruno G. (2015). Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium (IV, V) complexes containing chelidamic acid and novel thiourea derivatives. Journal of Inorganic Biochemistry, 147, 54-64. doi:10.1016/j.jinorgbio.2015.02.007

Feoktistova M, Geserick P, Leverkus M. (2016). Crystal violet assay for determining viability of cultured cells. Cold Spring Harbor Protocols, 4, 87379. doi:10.1101/pdb.prot087379

Hamad AR, Ahmed KM, Omer RA, Azeez YH, Kareem RO, Othman KA, Amin AA. (2025). Synthesis, characterization and computational study of thiourea-based dihydropyrimidine derivatives: A focus on adsorption and reactivity. Journal of Molecular Structure, 1325, 140950. doi:10.1016/j.molstruc.2024.140950

He G, Li H, Zhao Z, Liu Q, Yu J, Ji Z, Ning X, Ning F. (2024). Antifouling coatings based on the synergistic action of biogenic antimicrobial agents and low surface energy silicone resins and their application to marine aquaculture nets. Progress in Organic Coatings, 195, 108656. doi:10.1016/j.porgcoat.2024.108656

Idora MN, Ferry M, Nik WW, Jasnizat S. (2015). Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Progress in Organic Coatings, 81, 125-131. doi:10.1016/j.porgcoat.2014.12.012

Khairul WM, Goh YP, Daud AI, Nakisah MA. (2017). Cytotoxicity effects of alkoxy substituted thiourea derivatives towards Acanthamoeba sp. Arabian Journal of Chemistry, 10(4), 532-538. doi:10.1016/j.arabjc.2015.05.011

Khairul WM, Mokthar KA, Isa MIN, Samsudin AS, Adli HK, Ghazali SR, Daud AI. (2014). Synthesis and characterization of nitrobenzoylthiourea derivatives as potential conductive biodegradable thin films. Phosphorus, Sulfur, and Silicon and the Related Elements, 189(5), 640-651. doi:10.1080/10426507.2013.844137

Makhakhayi L, Malan FP, Senzani S, Tukulula M, Davison C, De la Mare JA, Manicum ALE. (2024). Synthesis, characterisation, X-ray diffraction and biological evaluation of new thiourea derivatives against Mycobacterium tuberculosis and cervical cancer. Journal of Molecular Structure, 1314, 138818. doi:10.1016/j.molstruc.2024.138818

Naseem S, Oneto A, Ullah S, Fatima S, Mali SN, Jawarkar RD, Khan A, Alharthy RD, Kashtoh H, Al-Haraasi A., Shafiq Z, Boshta NM. (2024). Synthesis, biological evaluation, and molecular modelling of substituted thiazolyl thiourea derivatives: A new class of prolyl oligopeptidase inhibitors. International Journal of Biological Macromolecules, 275, 133571. doi:10.1016/j.ijbiomac.2024.133571

Nishat N, Malik A. (2016). Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn (II), Co (II), Ni (II), Cu (II), and Zn (II)] metals. Journal of Saudi Chemical Society, 20, 7-15. doi:10.1016/j.jscs.2012.07.017

O’Hagan, D. (2008). Understanding organofluorine chemistry. An introduction to the C–F bond. Chemical Society Review., 37(2), 308–319. doi.org/10.1039/b711844a

Pereira S, Oliveira IB, Sousa ML, Gonçalves C, Preto M, Turkina MV, Vasconcelas V, Campos A, Almeida JR. (2024). Antifouling activity and ecotoxicological profile of the cyanobacterial oxadiazine nocuolin A. Chemosphere, 365, 143318. doi:10.1016/j.chemosphere.2024.143318

Purser S, Moore PR, Swallow S, Gouverneur V. (2008). Fluorine in medicinal chemistry. Chemical Society Review, 37(2), 320-330. doi.org/10.1039/b610213c

Qiao L, Huang J, Hu W, Zhang Y, Guo J, Cao W, Miao K, Qin B, Song J. (2017). Synthesis, characterization, and in vitro evaluation and in silico molecular docking of thiourea derivatives incorporating 4-(trifluoromethyl) phenyl moiety. Journal of Molecular Structure, 1139, 149-159. doi:10.1016/j.molstruc.2017.03.012

Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. (2022). Functional polymer materials for modern marine biofouling control. Progress in Polymer Science, 127, 101516. doi:10.1016/j.progpolymsci.2022.101516

Scheiner, S. (2020). Versatility of the cyano group in intermolecular interactions. Molecules, 25(19), 4495. doi.org/10.3390/molecules25194495

Shabir G, Saeed A, Zahid W, Naseer F, Riaz Z, Khalil N, Muneeba, Albericio F. (2023). Chemistry and pharmacology of fluorinated drugs approved by the FDA (2016-2022). Pharmaceuticals, 16(8), 1162-1162. doi.org/10.3390/ph16081162

Shakil MA, Ullah S, Halim SA, Mahmood K, Hanif M, Khalid M, Hussain A, Khan F, Altaf AA, Rashid M, Khan A, Anwar MU, Al-Harrasi A. (2024). Synthesis and characterization of some novel benzoyl thioureas as potent α-glucosidase inhibitors: In vitro and in silico. Journal of Molecular Structure, 1308, 138133. doi:10.1016/j.molstruc.2024.138133

Sroor FM, El-Sayed AF, Abdelraof M. (2025). Design, synthesis, and antimicrobial activity of new thiourea-uracil derivatives: Anti-biofilm, ROS, DHFR, computational and SAR studies. Bioorganic Chemistry, 108719. doi:10.1016/j.bioorg.2025.108719

Yiğit M, Celepci DB, Taslimi P, Yiğit B, Cetinkaya E, Özdemir İ, Gülçin İ. (2022). Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorganic Chemistry, 120, 105566. doi:10.1016/j.bioorg.2021.105566

Downloads

Published

2025-10-14

How to Cite

Wan Mohamed Zin, W. M. K., Daud, A. I. ., Voon, S. E. S. ., Hii, C. H. ., Ismail, N. ., & Erben, M. F. . (2025). Synthesis and Evaluation of Alkoxy-Substituted Thiourea Derivatives as Antifouling Agents in Marine Ecosystem Interests. Journal of Science and Mathematics Letters, 13(2), 107-119. https://doi.org/10.37134/jsml.vol13.2.8.2025

Similar Articles

1-10 of 138

You may also start an advanced similarity search for this article.