Examining the Thermal Dynamics of Coffee Cups: Evaluating the Impact of Cup Material on Thermal Characteristics via Numerical Simulations
DOI:
https://doi.org/10.37134/ejsmt.vol12.2.2.2025Keywords:
Heat transfer, Thermal performance, Heat equation, Crank-Nicolson method, Thermal conductivityAbstract
This work examines the thermal diffusivity properties of four different materials, ceramic, stainless steel, plastic, and glass, using the one-dimensional heat equation's Initial Boundary Value Problem (IBVP) framework. We investigate the transient thermal behaviour of these materials using numerical techniques like the Crank-Nicolson method and the explicit FTCS (Forward-Time Central-Space) method. We perform simulations and analyse heat transfer dynamics and temperature distributions using Python implementations with uniform step sizes. According to our research, there are notable differences in the thermal diffusivity performance of the materials, with stainless steel showing better conductive qualities. Furthermore, a look at the midpoint temperature profiles of the cups provides information on the thermal and temporal dynamics. A comparison of the Crank-Nicolson and FTCS approaches shows how effective the latter is in producing precise and stable solutions. The study contributes to a deeper understanding of material thermal properties and numerical methods' suitability for simulating heat transfer phenomena.
Downloads
References
[1] Janna, W. S. (2018). Engineering heat transfer. CRC press. https://doi.org/10.1201/9781439883143
[2] Dehghan, M. (2005). Efficient techniques for the second-order parabolic equation subject to nonlocal
[3] specifications. Applied Numerical Mathematics, 52(1), 39-62. https://doi.org/10.1016/j.apnum.2004.02.002
[4] Caldwell, J., & Kwan, Y. Y. (2009). A brief review of several numerical methods for one-dimensional Stefan
[5] problems. Thermal Science, 13(2), 61-72. https://doi.org/10.2298/TSCI0902061C
[6] Lehtinen, K. E., Hokkinen, J., Jokiniemi, A. A. J. K., & Gamble, R. E. (2002). Studies on steam condensation and
[7] particle diffusiophoresis in a heat exchanger tube. Nuclear Engineering and Design, 213(1), 67-77. https://doi.org/10.1016/S0029-5493(01)00453-8
[8] Stynes, M. (2005). Steady-state convection-diffusion problems. Acta Numerica, 14, 445-508. https://doi.org/10.1080/01495728008961767
[9] Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., Andersen, G. L., Piceno, Y. M., Singh, N., ... & Mason, O. U. (2010). Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001), 204-208. https://doi.org/10.1126/science.1195979
[10] Shamsundar, S., & Kayungilo, S. S. (2007). Performance optimization of solar PV systems to meet the school's power requirements. A case study of Viveka Tribal School at Hosahally Village, Karnataka State-India. https://www.osti.gov/etdeweb/biblio/21169728
[11] Lee, P. S., Garimella, S. V., & Liu, D. (2005). Investigation of heat transfer in rectangular microchannels. International journal of heat and mass transfer, 48(9), 1688-1704. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.019
[12] Kılıc, M., & Ullah, A. (2021). Numerical investigation of the effect of different parameters on heat transfer for a crossflow heat exchanger by using nanofluids. Journal of Thermal Engineering, 7(Supp 14), 1980-1989. https://doi.org/10.18186/thermal.1051287
[13] Neale, A. (2006). A study in computational fluid dynamics for the determination of convective heat and vapour transfer coefficients (Doctoral dissertation, Concordia University.
[14] Marwah, J. and Chopra, M.G. (1992) Transient Heat Transfer in a Slab with Heat Generation. Defence Science Journal, 32, 143-149. https://doi.org/10.14429/dsj.32.6274
[15] Elias, E.A., Cichota, R., Torrioni, H.H. and van Lier, Q.D.J. (2004) Analytical Soil-Temperature Model: Correction for Temporal Variation of Daily Amplitude, Soil Science Society of America Journal, 68, 784-788. https://doi.org/10.2136/sssaj2004.7840
[16] Crank, J. and Nicolson, P. (1947) A Practical Method for Numerical Evaluation of Solutions of Partial Differential
[17] Equations of the Heat Conduction Type. Mathematical Proceedings of the Cambridge Philosophical Society, 43, 50-67. https://doi.org/10.1017/S0305004100023197
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sabastine Emmanuel, Saratha Sathasivam, Siti Fatimah Azzahrah Binti Azhar, Nur Elya Nadhirah Binti Che Mazhaimi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

