Development of Artificial Intelligence Based Personalized Learning Materials for the Topic of Heat Among Form Four Students: A Needs Analysis Based on Teachers' Perception
DOI:
https://doi.org/10.37134/bitara.vol17.2.4.2024Keywords:
personalized-learning materials, artificial intelligence, topic of heat, needs analysis, teacher's perceptionsAbstract
Artificial Intelligence (AI) has advanced rapidly and offers a variety of innovative applications across different fields, including education. However, in Malaysia, the implementation of AI technology in Teaching and Learning (PdP) is still limited, particularly in the subject of Physics. Students often face significant challenges in learning the topic of heat due to the complex and abstract concepts that hinder their mastery of the subject during the PdP process. This study aims to analyze the need for self-learning materials among Form Four students for the Physics subject. A quantitative survey design was used, employing questionnaires as the research instrument. These questionnaires were distributed to 30 secondary school Physics teachers in the Kota Setar district, selected through a simple random sampling technique. The results of the study show that the majority of teachers (73.3%) consider the topic of heat to be challenging for students. Additionally, all teachers (100%) agreed on the need to develop AI-based self-learning materials focused on the topic of heat (73.3%) supporting this initiative. Most teachers (90.9%) chose the subtopic of specific latent heat as the content for development. A large portion of teachers (83.3%) selected interactive modules as the appropriate type of AI-based self-learning materials. The most suitable learning technique was identified as mastery learning (86.7%). In terms of activity implementation, most teachers chose experiments (96.7%), while for assessment, the majority of teachers preferred interactive exercises (83.3%). In conclusion, there is a clear need to develop AI-based self-learning materials for the topic of heat among Form Four students, based on teachers' perceptions. Based on the findings of this study, it is recommended to develop an AI-integrated comic-based e-module that can meet students' learning needs and present the topic of heat in a more comprehensible manner. This personalized learning material is expected to improve conceptual understanding among students.
Downloads
References
Adeoye, M. A. (2023). Review of sampling techniques for education. ASEAN Journal for Science Education, 2(2), 87-94.
Alam, A. (2021, December). Should robots replace teachers? Mobilisation of AI and learning analytics in education. In 2021 International Conference on Advances in Computing, Communication, and Control (ICAC3) (pp. 1-12). IEEE.
Aldarayseh, A. (2023). Acceptance of artificial intelligence in teaching science: Science teachers' perspective. Computers and Education: Artificial Intelligence, 4, 100132. https://doi.org/10.1016/j.caeai.2023.100132
Almeda, M.V.Q., & Baker, R.S. (2020). Predicting student participation in STEM careers: The role of affect and engagement during middle school. Journal of Educational Data Mining, 12(2), 33–47. https://doi.org/10.5281/zenodo.4008054
Argaw, A. S., Haile, B. B., Ayalew, B. T., & Kuma, S. G. (2017). The Effect of Problem Based Learning (PBL) Instruction on Students’ Motivation and Problem-Solving Skills of Physics. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 857–871.
Arhin, D., & Opoku, B. W. (2020). A Meta-Analysis on Effects of Mastery Learning Strategy (MLS) on Academic Achievements of Learners. International Journal of Research and Innovation in Social Science, 4(7), 102 – 106. Retrieved from https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-4-issue7/102106.pdf
Astra, I. M., Aminudin, D., & Henukh, A. (2021). Enhancing students’ learning activities using problem-based learning model on temperature and heat concept. In Journal of Physics: Conference Series 2019(1), 1 – 6. https://iopscience.iop.org/article/10.1088/1742-6596/2019/1/012025/meta
Bakri, F., Shabrina Pratiwi, & Dewi Muliyati. (2019). Video-enriched worksheet based on augmented reality technology: The heat experiment is easier. AIP Conference Proceedings. https://doi.org/10.1063/1.5132645
Bakri, S. N. S., Matawali, A., Jumat, N. R., Kanak, F. A., & Ismail, I. H. (2021). Encouraging STEM interest among high school students in rural area of Sabah: a Botanistnja module integrated with problem-based learning case. Transactions on Science and Technology, 8(3), 372–379. https://tost.unise.org/pdfs/vol8/no3-2/ToST-CoFA2020-372-379-OA.pdf
Bruneau, P., Wang, J., Cao L., & Truong, H. (2023). The potential of Chatgpt to enhance physics education in Vietnamese high schools. Journal Physics Education, 1 – 7. https://doi.org/10.35542/osf.io/36qw9
Butai, S. N., Awang, H., Ismail, I. H., & Eldy, E. F. (2021). Effectiveness of PBL-STEM module in physics on students’ interest: a preliminary finding of implementation amongst students in rural areas of Sabah, Malaysia. Transactions on Science and Technology, 8(3–2), 380–387. https://tost.unise.org/pdfs/vol8/no3-2/ToST-CoFA2020-380-387-OA.pdf
Chang, L. K. (2024, May). SPM 2023: Trend pelajar mengambil mata pelajaran sains tulen menurun. Berita Harian. https://www.bharian.com.my/berita/nasional/2024/05/1252374/spm-2023-trend-pelajar-mengambil-mata-pelajaran-sains-tulen-menurun
Creswell, J. W., & Creswell, J. D. (2023). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Sixth). SAGE Publication, Inc.
Cynthia, C., Arafah, K., & Palloan, P. (2023). Development of interactive physics e-module to improve critical thinking skills. Jurnal Penelitian Pendidikan IPA, 9(5), 3943–3952. https://doi.org/10.29303/jppipa.v9i5.2302
Devialita, A., Suhandi, A., Samsudi, A., Hendriyani, D., Purwanto, M. G., Riani, V. R., Nurzakiyah, E., & Gitnita, S. (2021). Analysis conception of secondary student’s using four tier test on heat and temperature. Journal of Physics: Conference Series 2098(1), 1 – 7. https://iopscience.iop.org/article/10.1088/1742-6596/2098/1/012002/meta
Ding, L., Reay, N., Lee, A., & Bao, L. (2011). Exploring the role of conceptual scaffolding in solving synthesis problems. Physical Review Special Topics—Physics Education Research, 7(2), 1 – 11. https://journals.aps.org/prper/abstract/10.1103/PhysRevSTPER.7.020109
Durall Gazulla, E., Martins, L., & Fernández-Ferrer, M. (2023). ”Designing learning technology collaboratively: Analysis of a chatbot codesign.” Education and Information Technologies, 28(1), 109 – 134. https://doi.org/10.1007/s10639-022-11162-w.
Fowler, F. J. (2014). Survey Research Methods (Fifth Edit). Sage Publications, Inc. https://www.jstor.org/stable/3250956?origin=crossref
González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied Sciences, 11(12), 5467. https://www.mdpi.com/2076-3417/11/12/5467
Hamed, G., & Aljanazrah, A. (2020). The effectiveness of using virtual experiments on students’ learning in the general physics lab. Journal of Information Technology Education: Research, 19, 976 – 995. https://doi.org/10.28945/4668
Harrison, A. G., Grayson, D. J., & Treagust, D. F.(1999). Investigating a grade 11 student’s evolving conceptions of heat and temperature. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 36 (1), 55 – 87. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-2736(199901)36:1%3C55::AID-TEA5%3E3.0.CO;2-P
Haryadi, R., & Pujiastuti, H. (2020). PhET simulation software-based learning to improve science process skills. Journal of Physics: Conference Series. 1521(2), 1 – 6. https://iopscience.iop.org/article/10.1088/1742-6596/1521/2/022017/meta
Hashim, S., Omar, M. K., Jalil, H. A., & Sharef, N. M. (2022). Trends on Technologies and Artificial Intelligence in Education for Personalized Learning: Systematic Literature Review. International Journal of Acdemic Research in Progressive Education and Development, 12(1), 884–903. http://hrmars.com/index.php/pages/detail/IJARPED
Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?. Educational psychology review, 16(3), 235 – 266. https://link.springer.com/article/10.1023/B:EDPR.0000034022.16470.f3
Huang, J., Saleh, S., & Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies. 10(3), 206 – 217. https://doi.org/10.36941/ajis-2021-0077.
Idris, N. (2013). Penyelidikan Dalam Pendidikan Edisi Kedua. Selangor: McGraw-Hill Education.
Jannah, M., Supardi Z. A. I., & Prabowo. (2020). Guided inquiry model with the REACT strategy learning materials to improve the students’ learning achievement. International Journal of Recent Educational Research, 1(2), 156 – 168. https://doi.org/10.46245/ijorer.v1i2.45
Kementerian Pendidikan Malaysia. (2013). Pelan Pembangunan Pendidikan Malaysia 2013 – 2015: Pendidikan Prasekolah hingga Lepas Menengah. Putrajaya: Kementerian Pelajaran Malaysia.
Khoiri, N., Lilyanam F. S. T., & Wijayanto, W. (2024). E-comic as a media to build an understanding of newtons concepts. Momentum: Physics Education Journal, 8(1), 154 – 165. https://doi.org/10.21067/mpej.v8i1.8478
Kim N. J., & Kim M. K. (2022). Teacher’s perceptions of using an artificial intelligence-based educational tool for scientific writing. Frontiers in Education, 7. https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2022.755914/full
Kurnianto, D., Sudiansyan, Heriyanto, Yani T., A., & T., H. (2022). Development of mathematics emodules through the professional flip pdf application assisted react strategy to improve problem solving ability of vocational middle school students concentration of accounting expertise. International Journal of Science and Society, 4(3), 499–512. https://doi.org/10.54783/ijsoc.v4i3.544
Kusuma, A. A. K., Maharani, W. A. D., Wibowo, F. C., Nasbey, H., & Costu, B. (2023). Effectiveness of Artificial Intelligent Independent Learning (AIIL) with physics chatbot of global warming concept. Momentum: Physics Education Journal, 8(1), 42 – 54. https://doi.org/10.21067/mpej.v8i1.8942
Li, Z. (2024). Research on Simulation Experiment Teaching Strategies for High School Physics in Remote Areas. Open Journal of Social Sciences, 12(8), 442 – 455. https://www.scirp.org/journal/paperinformation?paperid=135502
Mahligawati, F., Allanas, E., Butarbutar, M. H., & Nordin, N. A. N. (2023). Artificial intelligence in Physics Education: a comprehensive literature review. Journal of Physics: Conference Serie,. 2596(1), 1 – 6. https://iopscience.iop.org/article/10.1088/1742-6596/2596/1/012080/meta
Musa, R., & Kusairi, S. (2019). Analisis penguasaan konsep siswa materi suhu kalor pada pembelajaran Cognitive Apprenticeship (CA) disertai Formative E-Assessment. Jurnal Riset Pendidikan Fisika, 4(2), 85–90. https://journal2.um.ac.id/index.php/jrpf/article/view/15207/6082
Mustapa Kamal, S. F., Mohd Nasrah, S. K., & Syed Abdullah, S. M. (2021). Persepsi kaunselor terhadap Gangguan Stres Pasca Trauma (Post-Traumatic Stress Disorder) mangsa buli di Malaysia: Counsellor perception of Post-Traumatic Stress Disorder among bullying victim in Malaysia. Sains Insani, 6(1), 217-226. https://doi.org/10.33102/sainsinsani.vol6no1.277
Nasir, M., & Mahfuz (2023). Pemanfaatan google form untuk pelaporan form A di panwascam daha selatan: Inovasi teknologi dalam peningkatan efisiensi dan akurasi pengawasan pemilu. Jurnal Pendidikan Sosial dan Humaniora, 2(3), 11808-11824. https://publisherqu.com/index.php/pediaqu/article/view/403/389
Onder, F., Şenyiǧit, Ç., & Silay. (2018). Effect of an inquiry-based learning method on students’ misconceptions about charging of conducting and insulating bodies. European Journal of Physics, 39(5). https://doi.org/10.1088/1361-6404/aac52a
Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Research in Nursing & Health, 30(4), 459 – 467. https://onlinelibrary.wiley.com/doi/abs/10.1002/nur.20199
Raflee, S. S. M., & Halim, L. (2021). The effectiveness of critical thinking in improving skills in KBAT problem solving. Jurnal Pendidikan Sains Dan Matematik Malaysia,11(1), 60 – 76. https://doi.org/10.37134/jpsmm.vol11.1.6.2021
Rahmi, A., Fitri Y. W., Zahara, F., & Desnita (2021). Meta analisis pengaruh model pembelajaran Problem Based Learning (PBL) terhadap hasil belajar fisika. Jurnal Pendidikan Fisika Undiksha, 11 (2), 20 – 25. http://repository.unp.ac.id/38097/
Reinhold, S., Holzberger, D., & Seidel, T. (2018). Encouraging a career in Science: A research review of secondary schools’ effects on students’ STEM orientation. Studies in Science Education, 54(1), 69–103. https://doi.org/10.1080/03057267.2018.1442900
Rohayu, S. H., Puspitasari, I., & Mohtar, L. E. (2021). Ciri Kefahaman Pelajar Sekolah Menengah Atas Negeri Menggunakan Teknik Kartun Konsep Dalam Topik Haba. Journal of Science and Mathematics Letters, 9(2), 33-42. https://doi.org/10.37134/jsml.vol9.2.4.2021
Sari, Y., Qadar, R., & Hakim, A. (2023). Analysis of High School Students’ Conceptual Understanding of Physics on Temperature and Heat Concepts. International Journal of STEM Education for Sustainability, 3(1), 212–224. https://doi.org/10.53889/ijses.v3i1.92
Sawitri, I., Suparmi, & Aminah, N. S. (2016). Pembelajaran fisika berbasis problem-based learning (pbl) menggunakan metode eksperimen dan demonstrasi ditinjau dari kemampuan berpikir kritis terhadap prestasi belajar dan keterampilan metakognitif. Jurnal Inkuiri, 5(2), 79 – 86. https://jurnal.uns.ac.id/inkuiri/article/view/9480/8410
Selvam, A. A. A. (2024). Exploring the impact of artificial intelligence on transforming physics, chemistry, and biology education. The Cuvette. https://doi.org/10.21428/a70c814c.747297aa
Shafie, H., Abd Majid, F., & Ismail, I. S. (2019). Technological Pedagogical Content Knowledge (TPACK) in teaching 21st century skills in the 21st century classroom. Asian Journal of University Education, 15(3) 24 – 33.
Shamsuddin, N. F., & Nasri, N. M. (2022). Kajian tinjauan penggunaan jenis peranti dan status capaian internet terhadap kesediaan pelajar mengikuti PDPR semasa penularan COVID-19. Jurnal Dunia Pendidikan, 4(1), 70 – 76. https://scholar.archive.org/work/usdsgylycvey7kygo7nfzfxbc4/access/wayback/https://myjms.mohe.gov.my/index.php/jdpd/article/download/17064/9173
Sharifov, G., & MacIsaac, D. (2021). Effectiveness of a simulated thermodynamics lab in a grade eight lyceum class. Jurnal Pendidikan Fisika Indonesia, 17(2), 133 – 140. https://journal.unnes.ac.id/nju/JPFI/article/view/27589
Singh, A. S., & Masuku, M. B. (2014). Sampling techniques & determination of sample size in applied statistics research: An overview. International Journal of economics, commerce and management, 2(11), 1-22. https://www.academia.edu/download/65225177/21131_IJECM.pdf
Su, K. D. (2022). Implementation of innovative artificial intelligence cognitions with problem-based learning guided tasks to enhance students’performance in science. Journal of Baltic Science Education, 21(2), 245-257. https://www.ceeol.com/search/article-detail?id=1038066
The Curriculum Development Department, Buku Penerangan Kurikulum Standard Sekolah Menengah (KSSM). Putrajaya, Malaysia: Bahagian Pembangunan Kurikulum Ministry of Education Malaysia (in Malay), 2016.
Vilarta, L. V., Veen, J. T., Anjewierden, A., Berg, E., & Jong, T. (2020). Designing inquiry-based learning environments for quantum physics education in secondary schools. Physics Education, 55(6), 1 – 9. https://doi.org/10.1088/1361-6552/abb346
Wambugu, P. W. & Changeiywo, J. M. (2008). Effects of mastery learning approach on secondary school students’ physics achievement. Eurasia Journal of Mathematics, Science & Technology Education, 4(3), 293 – 302. http://dx.doi.org/10.12973/ejmste/75352
Yahya, N. B., & Azaharuddin, N. A. B. (2010). Pembangunan Laman Web Bagi Mata Pelajaran Fizik Tingkatan 4: Haba Pendam Tentu Pengewapan Dengan Menggunakan Teori Konstruktivisme. https://core.ac.uk/download/pdf/11785557.pdf
Yim, I. H. Y., & Su, J. (2023). Artifcial intelligence (AI) learning tools in K‑12 education: A scoping review. Journal of Computers in Education. https://link.springer.com/article/10.1007/s40692-023-00304-9
Yolviansyah, F., Suryanti, S., Rini, E. S., Matondang, M. M., & Wahyuni, S. (2021). Hubungan minat belajar siswa terhadap hasil belajar fisika di SMAN 3 Muaro Jambi. Tunjuk Ajar J. Penelit. Ilmu Pendidik, 4(1), 16-25. http://dx.doi.org/10.31258/jta.v4i1.16-25
Zheng, L., Niu, J., Zhong, L., & Gyasi, J. F. (2021). The effectiveness of artificial intelligence on learning achievement and learning perception: A meta-analysis. Interactive Learning Environments, 31(9), 5650–5664. https://doi.org/10.1080/10494820.2021.2015693
Zudonu, O. C., Osiah, C. U., Ogbu, M., Adejoke, B., John, J. P., & Nkisa, O. D. (2024). Investigating the effect of artificial intelligence on chemistry and physics students' achievement and conceptual change in heat change in SSS2 in rivers state. International Journal of Chemistry and Chemical Processes, 10(3), 42 – 66. https://iiardjournals.org/get/IJCCP/Vol%2010.%20No.%203%202024/Investigating%20the%20Effect%20of%20Artificial%2042-66.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Syarifuddin Abd Razak, Suriani Abu Bakar, Anis Nazihah Mat Daud, Nurazreen Mohd Ghazali, Azzam Abu Bakar, Hamdan Hadi Kusuma, Silvi Yulia Sari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.