Influence of Maturity Stage and Sampling Time on the Metabolite Profiles of Piper sarmentosum Using Optimized NMR Parameters
DOI:
https://doi.org/10.37134/jsml.vol14.1.6.2026Keywords:
Metabolomics, Optimization, Piper sarmentosum, NMRAbstract
Optimization is a critical step in metabolomics workflows to ensure reliable data, particularly when handling large sample numbers. In this study, optimization was carried out for Piper sarmentosum Roxb., a medicinal herb of regional importance, to establish standardized procedures for NMR-based metabolomic analysis and sample collection. Extraction conditions were evaluated using different sample masses, with 75 mg of freeze-dried material providing the best signal intensity, particularly in the aromatic region. Several NOESY-based NMR parameter sets were then compared, and the settings adapted from Halabalaki et al. (2014) produced the highest spectral quality and were adopted for further analyses. Following optimization, the influence of leaf maturity and harvesting time on metabolite composition was assessed using 1D NOESY NMR spectroscopy. Partial least square discriminant analysis (PLS-DA) revealed clear metabolic distinctions between young and mature leaves, while samples collected in the morning and afternoon showed no notable differences, indicating that sampling time had minimal impact on metabolite composition. The optimized protocols established in this work minimize technical variability, enhance spectral reproducibility, and improve metabolite detectability. These outcomes provide a robust platform for large-scale metabolomics investigations of P. sarmentosum and other medicinal plants.
Downloads
References
Abd Ghafar SZ, Mediani A, Maulidiani M, Rudiyanto R, Ghazali HM, Ramli NS, Abas F. (2020). Complementary NMR-and MS-based metabolomics approaches reveal the correlations of phytochemicals and biological activities in Phyllanthus acidus leaf extracts. Food Research International, 136, 109312. doi:10.1016/j.foodres.2020.109312
Abdul‐Hamid NA, Maulidiani M, Mediani, A, Yahya UII, Ismail IS, Tham CL, Shadid K, Abas F. (2018). Physicochemical characteristics, nutritional composition, and phytochemical profiles of nine Algerian date palm fruit (Phoenix dactylifera L.) varieties. Journal of Food Biochemistry, 42(6), e12663. doi:10.1111/jfbc.12663
Adib AM, Salmi, NN, Kasim N, Ling SK, Cordell GA, Ismail NH. (2024). The metabolites of Piper sarmentosum and their biological properties: a recent update. Phytochemistry Reviews, 23(5), 1443-1475. doi:10.1007/s11101-024-09930-2
Anjur N, Sabran SF, Daud HM, Othman NZ. (2022). Antibacterial activity and toxicity study of selected Piper leaves extracts against the fish pathogen (Aeromonas hydrophila). 7th International Conference on Biological Science 2021. Atlantis Press, Amsterdam, p. 118-123. doi:10.2991/absr.k.220406.018
Azlina MFN, Qodriyah MS, Akmal MN, Ibrahim IAA, Kamisah Y. (2019). In vivo effect of Piper sarmentosum methanolic extract on stressinduced gastric ulcers in rats. Archives of Medical Science, 15(1), 223-231. doi:10.5114/aoms.2016.63156
Azmi MF, Aminuddin A, Jamal JA, Hamid AA, Ugusman A. (2021). Quantified Piper sarmentosum Roxb. leaves aqueous leaf extract and its antihypertensive effect in dexamethasone-induced hypertensive rats. Sains Malaysiana, 50(1), 171-179. doi:10.17576/jsm-2021-5001-17
Edison AS, Colonna M, Gouveia, GJ, Holderman NR, Judge MT, Shen X, Zhang S. (2021) NMR: Unique strengths that enhance modern metabolomics research. Analytical Chemistry, 93, 478-499. doi:10.1021/acs.analchem.0c04414
Halabalaki M, Vougogiannopoulou K, Mikros E, Skaltsounis AL. (2014). Recent advances and new strategies in the NMR-based identification of natural products. Current Opinion in Biotechnology, 25, 1-7. doi:10.1016/j.copbio.2013.08.005
Hematpoor A, Paydar M, Liew SY, Sivasothy Y, Mohebali N, Looi CY, Wong WF, Azirun MS, Awang K. (2018). Phenylpropanoids isolated from Piper sarmentosum Roxb. Induce apoptosis in breast cancer cells through reactive oxygen species and mitochondrial-dependent pathways. Chemico-Biological Interactions, 279, 210-218. doi:10.1016/j.cbi.2017.11.014
Ibrahim MA, Asri NAAM. (2020). The study of antioxidant activities of Piper sarmentosum and Piper nigrum. Tropical Agrobiodiversity, 1, 1-3. doi:10.26480/trab.01.2020.01.03
Kaiser KA, Barding Jr GA, Larive CK. (2009). A comparison of metabolite extraction strategies for 1H‐NMR‐based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana. Magnetic Resonance in Chemistry, 47(1), 147-156. doi:10.1002/mrc.2457
Kalivodová A, Hron K, Filzmoser P, Najdekr L, Janečková H, Adam T. (2015). PLS‐DA for compositional data with application to metabolomics. Journal of Chemometrics, 29(1), 21-28. doi:10.1002/cem.2657
Kasim N, Afzan A, Mediani A, Low KH, Ali AM, Mat N, Wolfender JL, Ismail NH. (2022). Correlation of chemical profiles obtained from 1H‐NMR and LC–MS metabolomics with α‐glucosidase inhibition activity for varietal selections of Ficus deltoidea. Phytochemical Analysis, 33(8), 1235-1245. doi:10.1002/pca.3175
Kim HK, Choi YH, Verpoorte R. (2010). NMR-based metabolomic analysis of plants. Nature Protocols, 5, 536-549. doi:10.1038/nprot.2009.237
Lee KM, Jeon JY, Lee BJ, Lee H, Choi HK. (2017). Application of metabolomics to quality control of natural product derived medicines. Biomolecules and Therapeutics, 25(6), 559. doi:10.4062/biomolther.2016.249
Li Y, He Q, Geng Z, Du S, Deng Z, Hasi E. (2018). NMR-based metabolomic profiling of Peganum harmala L. reveals dynamic variations between different growth stages. Royal Society Open Science, 5(7), 171722. doi:10.1098/rsos.171722
Li Y, Kong D, Fu Y, Sussman MR, Wu H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry. 148, 80-89. doi:10.1016/j.plaphy.2020.01.006
Markley JL, Bruschweiler R, EdisonmAS, Eghbalnia HR, Powers R, Raftery D, Wishart DS. (2017). The future of NMR-based metabolomics. Current Opinion in Biotechnology, 43, 34-40. doi:10.1016/j.copbio.2016.08.001
Martin JC, Maillot M, Mazerolles G, Verdu A, Lyan B, Migné C, Defoort C, Canlet C, Junot C, Guillou C, Manach C, Jabob D, Bouveresse DJ, Paris E, Pujos-Guillot E, Jourdan F, Giacomoni F, Courant F, Favé G, Le Gall G, Chassaigne H, Tabet JC, Martin JF, Antignac JP, Shintu L, Defernez M, Philo M, Alexandre-Gouaubau MC, Amiot-Carlin MJ, Bossis M, Triba MN, Stojilkovic N, Banzet N, Molinié R, Bott R, Goulitquer S, Caldarelli S, Rutledge DN. (2015). Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-scale, multi-instrument inter-laboratory study. Metabolomics, 11(4), 807-821. doi:10.1007/s11306-014-0740-0
Mathew SP, Mohandas A, Nair GM. (2004). Piper sarmentosum Roxb. - an addition to the flora of Andaman islands. Current Science, 87, 141-142.
Mohamad Asri SF, Mohd Ramli ES, Soelaiman IN, Mat Noh MA, Abdul Rashid AH, Suhaimi F. (2016). Piper sarmentosum effects on 11β-hydroxysteroid dehydrogenase type 1 enzyme in serum and bone in rat model of glucocorticoid-Induced osteoporosis. Molecules, 21(11), 1523. doi:10.3390/molecules21111523
Nagana GGA, Raftery D. (2021). NMR-based metabolomics. In Cancer metabolomics: Methods and applications. Cham: Springer International Publishing.
Ocampos FM, de Souza AJB, Ribeiro, GH, Almeida, LS, Cônsolo NR, Colnago LA. (2024). NMR-based plant metabolomics protocols: a step-by-step guide. Frontiers in Natural Products, 3, 1414506. doi:10.3389/fntpr.2024.1414506
Salleh WMNHW, Ahmad F, Khong HY. (2015). Chemical constituents from Piper caninum and antibacterial activity. Journal of Applied Pharmaceutical Sciences, 5(6), 20-25. doi:10.7324/JAPS.2015.50604
Salleh WMNHW, Hashim NA, Khamis S. (2019). Chemical constituents and lipoxygenase inhibitory activity of Piper stylosum Miq. Bulletin of the Chemical Society of Ethiopia, 33(3), 587-592. doi:10.4314/bcse.v33i3.19
Salleh WMNHW. (2020). A systematic review of botany, phytochemicals and pharmacological properties of ‘hoja santa’ (Piper auritum Kunth). Zeitschrift für Naturforschung C-A Journal of Bioscience, 76(3-4), 93-102. doi:10.1515/znc-2020-0116
Tajidin NE, Shaari K, Maulidiani M, Salleh NS, Ketaren BR, Mohamad M. (2019). Metabolite profiling of Andrographis paniculata (Burm. f.) Nees. young and mature leaves at different harvest ages using 1H NMR-based metabolomics approach. Scientific Reports, 9(1), 16766. doi:10.1038/s41598-019-52905-z
Wu X, Li N, Li H, Tang H. (2014). An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency. Analyst, 139(7), 1769-1778. doi:10.1039/C3AN02100A
Xiao Q, Mu X, Liu J, Li B, Liu H, Zhang B, Xiao P. (2022). Plant metabolomics: a new strategy and tool for quality evaluation of Chinese medicinal materials. Chinese Medicine, 17(1), 45. doi:10.1186/s13020-022-00601-y
Xue XZ, Zhang Q, Bi XB, Gong Y, Wang ML, Wang JH, Cui JL. (2020). NMR and UPLC-QTOF/MS-Based Metabolomics of Different Developmental Stages of Cynomorium songaricum. Italian Journal of Food Science, 32(4), 997. doi:10.14674/IJFS.1907
Zhao J, WangM, Saroja SG, Khan IA. (2022). NMR technique and methodology in botanical health product analysis and quality control. Journal of Pharmaceutical and Biomedical Analysis, 207, 114376. doi:10.1016/J.JPBA.2021.114376
Zhuoma Y, Yang M, Chen ., Zhang X, Duan X, Cui H, Fang X, Hu X. (2025) NMR-based metabolomics analysis of metabolite profiles in two species of boletes subjected to different drying methods. Metabolites, 15(3), 152. doi:10.3390/metabo15030152
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Adiana Mohamed Adib, Sui Kiong Ling , Nurunajah Ab Ghani, Noraini Kasim

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


