Aquaculture Pond Mapping in Sungai Udang, Penang, Using Google Earth Engine

Pemetaan Kolam Akuakultur di Sungai Udang, Pulau Pinang, menggunakan Engin Bumi Google

Authors

  • Arvinth Rajadran GeoInformatic Unit, Geography Section, School of Humanities, 11800 Universiti Sains Malaysia, Pulau Pinang, MALAYSIA
  • Mou Leong Tan GeoInformatic Unit, Geography Section, School of Humanities, 11800 Universiti Sains Malaysia, Pulau Pinang, MALAYSIA
  • Ngai Weng Chan GeoInformatic Unit, Geography Section, School of Humanities, 11800 Universiti Sains Malaysia, Pulau Pinang, MALAYSIA
  • Narimah Samat GeoInformatic Unit, Geography Section, School of Humanities, 11800 Universiti Sains Malaysia, Pulau Pinang, MALAYSIA

DOI:

https://doi.org/10.37134/geografi.vol9.2.5.2021

Keywords:

Google Earth Engine, Aquaculture Mapping, Remote Sensing, Sungai Udang, Penang

Abstract

Aquaculture has a vital function in ecology, environment, and economy. Without adequate monitoring and management, aquaculture might have negative environmental repercussions. In terms of managing and design the industry's long-term operations, it is necessary to map the distribution of aquaculture ponds. Aquaculture ponds can now be detected and mapped using remote sensing. A large-scale mapping can be performed fast due to the recent advancements in cloud computing and big data. In this study, 10 m Sentinel 2 images were used to classify aquaculture in Sungai Udang, Pulau Pinang. This study aims to compare three machine learning classifiers such as Support Vector Machine (SVM), Random Forest (RF) and Classification and Regression Tree (CART) that available in the Google Earth Engine (GEE) cloud computing platform in mapping aquaculture ponds. From 2016 to 2020, the SVM, CART, and RF generated 97.35%, 93.86%, and 93.48% overall accuracy, respectively. In general, SVM was the most accurate among the three machine learning classifier algorithms in classifying the three classes (aquaculture, vegetation, and urban). The area of the aquaculture pond derived from Google Earth Pro is nearly identical to the classified image's region. This study shows that GEE is useful in mapping aquaculture ponds on a small scale using a cloud-based and free platform. The result of this study can be used by a variety of organisations to manage and monitor aquaculture pond fish production and environment degradation.

Downloads

Download data is not yet available.

References

Ahmed, M., & Lorica, M. H. (2002). Improving developing country food security through aquaculture development—lessons from Asia. Food Policy, 27(1652), 125–141.

Aksoy, S., Koperski, K., Tusk, C., Marchisio, G., Tilton, J. C., & Member, S. (2005). Learning Bayesian classifiers for scene classification with a visual grammar. IEEE Transactions on Geoscience And Remote Sensing, 43(3), 581–589.

Allison, E. H. (2011). Aquaculture, Fisheries, Poverty and Food Security (65).

Azra, M. N., Azman, N., Othman, R., Afiz, G., Ruslan, G., Mazelan, S., Bin, Z., & Sar, G. (2021). Impact of COVID-19 on aquaculture sector in Malaysia: Findings from the first national survey. Aquaculture Reports, 19. https://doi.org/10.1016/j.aqrep.2020.100568

Bannari, A., Taylor, P., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(June 2013), 95–120. https://doi.org/http://dx.doi.org/10.1080/02757259509532298

Barbosa, C. C. D. A., Atkinson, P. M., & Dearing, J. A. (2015). Remote sensing of ecosystem services : A systematic review. Ecological Indicators, 52, 430–443. https://doi.org/10.1016/j.ecolind.2015.01.007

Belgiu, M., & Dragut, L. (2016). Random forest in remote sensing: A review of applications and future directions gut. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Beveridge, M. C. M., Thilsted, S. H., Phillip, M. J., Metian, M., Troell, M., & Hall, S. J. (2013). Meeting the food and nutrition needs of the poor : the role of fish and the opportunities and challenges emerging from the rise of aquaculture. Journal of Fish Biology, 83, 1067–1084. https://doi.org/10.1111/jfb.12187

Breiman, L. E. O. (2001). Random Forests. 5–32.

Breiman, L, Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Chapman and Hall/CRC.

Breiman, Leo. (1996). Bagging Predictors. Machine learning, 24, 123–140.

Campbell, B., & Pauly, D. (2013). Mariculture: A global analysis of production trends since 1950. Marine Policy, 39, 94–100. https://doi.org/10.1016/j.marpol.2012.10.009

Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., & Diana, J. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science Pollution Research, 14(7), 452–462. https://doi.org/http://dx.doi.org/10.1065/espr2007.05.426

DOF. (2020). Malaysian Fishing Industry Scenario. Department of Fisheries Malaysia. https://www.dof.gov.my/index.php/pages/view/42

Duan, Y, Li, X., Zhang, L., Liu, W., Liu, S., Chen, D., & Ji, H. (2020). Detecting spatiotemporal changes of large-scale aquaculture ponds regions over 1988–2018 in Jiangsu Province, China using Google Earth Engine. Ocean and Coastal Management, 188. https://doi.org/10.1016/j.ocecoaman.2020.105144

Duan, Yuanqiang, Li, X., Zhang, L., Chen, D., Liu, S., & Ji, H. (2019). Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture, 520(November 2019), 734666. https://doi.org/10.1016/j.aquaculture.2019.734666

FAO. (2002). CWP Handbook of Fishery Statistical Standards. Section J: AQUACULTURE. CWP Data Collection [WWW Document]. FAO Fish. Aquac. Dep. http://www.fao.org/fishery/cwp/handbook/J/en

FAO. (2014). The State of World Fisheries and Aquaculture 2014.

FAO. (2016). The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all.

FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. https://doi.org/https://doi.org/10.4060/ca9229en

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine : Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 2016. https://doi.org/10.1016/j.rse.2017.06.031

He, Z., Cheng, X., Kyzas, G. Z., & Fu, J. (2016). Pharmaceuticals pollution of aquaculture and its management in China. Journal of Molecular Liquids, 223, 781–789. https://doi.org/10.1016/j.molliq.2016.09.005

Herbeck, L. S., Unger, D., Wu, Y., & Jennerjahn, T. C. (2013). Effluent , nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan , tropical China. Continental Shelf Research, 57, 92–104. https://doi.org/10.1016/j.csr.2012.05.006

Holmstrom, K., Graslund, S., Wahlstrom, A., Poungshompoo, S., Bengtsson, B.-E., & Kautsky, N. (2003). Antibiotic use in shrimp farming and implications for environmental impacts and human health. International Journal of Food Science and Technology, 38, 255–266.

Hossain, M. S., Uddin, M. J., & Fakhruddin, A. N. M. (2013). Impacts of shrimp farming on the coastal environment of Bangladesh and approach for management. Reviews Environmental Science and Bio/technology, 12, 313–332. https://doi.org/10.1007/s11157-013-9311-5

Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. https://doi.org/10.1080/01431160110040323

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics, 42(2), 513–529.

Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M. R., Kuemmerle, T., Meyfroidt, P., Mitchard, E. T. A., Reiche, J., & Ryan, C. M. (2016). A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sensing, 8(70), 1–23. https://doi.org/10.3390/rs8010070

Keesing, J. K., Liu, D., Fearns, P., & Garcia, R. (2011). Inter- and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007 – 2009 , their origin and relationship to the expansion of coastal seaweed aquaculture in China. Marine Pollution Bulletin, 62, 1169–1182. https://doi.org/10.1016/j.marpolbul.2011.03.040

Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Inception : Usage, Trends, and Potential. Remote Sensing, 10(1509), 1–15. https://doi.org/10.3390/rs10101509

Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003

Lee, J. H., Pang, I., Moon, I., & Ryu, J. (2011). On physical factors that controlled the massive green tide occurrence along the southern coast of the Shandong Peninsula in 2008 : A numerical study using a particle-tracking experiment. Journal of Geophysical Research, 116, 1–12. https://doi.org/10.1029/2011JC007512

Liang, P., Wu, S., Zhang, J., Cao, Y., Yu, S., & Wong, M.-H. (2016). The effects of mariculture on heavy metal distribution in sediments and cultured fi sh around the Pearl River Delta region , south China. Chemosphere, 148, 171–177. https://doi.org/10.1016/j.chemosphere.2015.10.110

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., & Jie, W. (2015). Remote sensing big data computing : Challenges and opportunities. Future Generation Computer Systems, 51, 47–60. https://doi.org/10.1016/j.future.2014.10.029

Mantero, P., Moser, G., & Serpico, S. B. (2005). Partially Supervised Classification of Remote Sensing Images Through SVM-Based Probability Density Estimation. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 559–570.

Marini, Y., Emiyati, P. T., Hanzah, R., & Hasyim, B. (2013). Fishpond aquaculture inventory in Maros Regency of south sulawesi province. Int. J. Remote Sens, 10, 25–35.

Natale, F., Hofherr, J., Fiore, G., & Virtanen, J. (2013). Interactions between aquaculture and fisheries. Marine Policy, 38, 205–213. https://doi.org/10.1016/j.marpol.2012.05.037

Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405, 1017–1024.

Nery, T., Sadler, R., Solis-aulestia, M., White, B., Polyakov, M., & Chalak, M. (2016). Comparing supervised algorithms in land use and land cover classification of a landsat time-series. IGARSS 2016, 5165–5168.

Ottinger, M., Clauss, K., & Kuenzer, C. (2016). Aquaculture : Relevance , distribution , impacts and spatial assessments - A review. Ocean and Coastal Management, 119(2016), 244–266. https://doi.org/10.1016/j.ocecoaman.2015.10.015

Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. https://doi.org/10.1080/01431160512331314083

Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86, 554–565. https://doi.org/10.1016/S0034-4257(03)00132-9

Pal, M., & Mather, P. M. (2004). Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20, 1215–1225. https://doi.org/10.1016/j.future.2003.11.011

Pattanaik, C., & Prasad, S. N. (2011). Assessment of aquaculture impact on mangroves of Mahanadi delta ( Orissa ), East coast of India using remote sensing and GIS. Ocean and Coastal Management, 54(11), 789–795. https://doi.org/10.1016/j.ocecoaman.2011.07.013

Paul, B. G., & Vogl, C. R. (2011). Impacts of shrimp farming in Bangladesh : Challenges and alternatives. Ocean and Coastal Management, 54(3), 201–211. https://doi.org/10.1016/j.ocecoaman.2010.12.001

Pauly, D., & Froese, R. (2012). Comments on FAO ’ s State of Fisheries and Aquaculture , or ‘ SOFIA 2010 .’ Marine Policy, 36(3), 746–752. https://doi.org/10.1016/j.marpol.2011.10.021

Peng, Y., Chen, G., Li, S., Liu, Y., & Pernetta, J. C. (2013). Use of degraded coastal wetland in an integrated mangrove e aquaculture system: a case study from the South China Sea. Ocean and Coastal Management, 85, 209–213. https://doi.org/10.1016/j.ocecoaman.2013.04.008

Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. 49, 531–545. https://doi.org/10.1016/j.ocecoaman.2006.06.018

Qu, Y., Qi, H., Ayhan, B., Kwan, C., & Kidd, R. (2017). Does multispectral / hyperspectral pansharpening improve the performance of anomaly detection? IGARSS 2017, 6130–6133.

Sabra, F. S., & Mehana, E. E. (2015). Pesticides toxicity in fish with particular reference to insecticides. Asian Journal of Agriculture and Food Sciences, 3(01), 40–60.

Schumann, G. J.-P., Neal, J. C., Mason, D. C., & Bates, P. D. (2011). The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics , a case study of the UK summer 2007 floods. Remote Sensing of Environment, 115(10), 2536–2546. https://doi.org/10.1016/j.rse.2011.04.039

Shaharum, N. S. N., Shafri, H. Z. M. S., Ghani, W. A. W. A. K., Samsatli, S., Al-habshi, M. M. A., & Yusuf, B. (2020). Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment, 17(100287). https://doi.org/10.1016/j.rsase.2020.100287

Slater, M. J., Mgaya, Y. D., Mill, A. C., Rushton, S. P., & Stead, S. M. (2013). Effect of social and economic drivers on choosing aquaculture as a coastal livelihood. Ocean and Coastal Management, 73, 22–30. https://doi.org/10.1016/j.ocecoaman.2012.12.002

Smith, M. D., Roheim, C. A., Crowder, L. B., Halpern, B. S., Turnipseed, M., Anderson, J. L., Asche, F., Bourillón, L., Guttormsen, A. G., Khan, A., Liguori, L. A., Mcnevin, A., Connor, M. I. O., Squires, D., Tyedmers, P., Brownstein, C., Carden, K., Klinger, D. H., Sagarin, R., & Selkoe, K. A. (2010). Sustainability and Global Seafood. AAAS. https://doi.org/10.1126/science.1185345

Stiller, D., Ottinger, M., & Leinenkugel, P. (2019). Spatio-temporal patterns of coastal aquaculture derived from Sentinel-1 time series data and the full Landsat archive. Remote Sensing, 11(14), 1–18. https://doi.org/10.3390/rs11141707

Sun, Z., Luo, J., Yang, J., Yu, Q., Zhang, L., Xue, K., & Lu, L. (2020). Nation-scale mapping of coastal aquaculture ponds with sentinel-1 SAR data using google earth engine. Remote Sensing, 12(18), 1–18. https://doi.org/10.3390/RS12183086

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications : A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(March), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001

The World Bank, F. to 2030. (2013). Prospects for Fisheries and Aquaculture.

Troell, M., Naylor, R. L., Metian, M., Beveridge, M., Tyedmers, P. H., & Folke, C. (2014). Does aquaculture add resilience to the global food system ? PNAS. https://doi.org/10.1073/pnas.1404067111

Tso, B., & Mather, P. M. (2009). Classification Methods for Remotely Sensed Data. CRC Press.

Tsoi, A. C., & Pearson, R. A. (1991). Comparison of three classification techniques, CART, C4.5 and Multi-Layer Perceptrons. NIPS’90: Proceedings of the 3rd International Conference on Neural Information Processing Systems, 963–969.

Tumer, K., & Ghosh, J. (1996). Analysis of Decision Boundaries in Linearly Combined Neural Classifiers (Patent No. 0031-3203(95)00085-2). Pattern Recognition Society.

Vaghefi, N. (2017). Penang’s Aquaculture Industry Holds Great Economic Potential By. In Penang Institute Issues. https://penanginstitute.org/publications/issues/1005-penang-s-aquaculture-industry-holds-great-economic-potential/

Verdegem, M. C. J., & Bosma, R. H. (2009). Water withdrawal for brackish and inland aquaculture , and options to produce more fish in ponds with present water use. Water Policy, 1, 52–68. https://doi.org/10.2166/wp.2009

Wang, S., Tang, D., He, F., Fukuyo, Y., & Azanza, R. V. (2008). Occurrences of harmful algal blooms ( HABs ) associated with ocean environments in the South China Sea. Hydrobiologia, 596, 79–93. https://doi.org/10.1007/s10750-007-9059-4

Xia, Z., Guo, X., & Chen, R. (2020). Automatic extraction of aquaculture ponds based on Google Earth Engine. Ocean and Coastal Management, 198. https://doi.org/10.1016/j.ocecoaman.2020.105348

Xu, H. (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9, 589–595.

Yokoya, N., Grohnfeldt, C., & Chanussot, J. (2017, June). Hyperspectral and Multispectral Data Fusion. IIEEE Geoscience and Remote Sensing Magazine, 29–56. https://doi.org/10.1109/MGRS.2016.2637824

Yu, Z., Di, L., Rahman, M. S., & Tang, J. (2020). Fishpond mapping by spectral and spatial-based filtering on google earth engine: A case study in singra upazila of Bangladesh. Remote Sensing, 12(17). https://doi.org/10.3390/RS12172692

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized di ff erence built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/0.1080/01431160210144570

Downloads

Published

2021-12-16

How to Cite

Rajadran, A., Tan, M. L., Chan, N. W., & Samat, N. (2021). Aquaculture Pond Mapping in Sungai Udang, Penang, Using Google Earth Engine: Pemetaan Kolam Akuakultur di Sungai Udang, Pulau Pinang, menggunakan Engin Bumi Google. GEOGRAFI, 9(2), 86–106. https://doi.org/10.37134/geografi.vol9.2.5.2021

Issue

Section

Articles