A Systematic Literature Review on Deep Learning Approaches for Cloud Service Recommender Systems

Authors

  • Rahaman Md Mizanur Faculty of Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
  • Nor Asiah Mohamad @Razak Faculty of Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia. https://orcid.org/0000-0002-1108-9341
  • Muhamad Hariz Muhamad Adnan Faculty of Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
  • Md Mahmudul Hasan Faculty of Engineering, University of New South Wales, Australia.

DOI:

https://doi.org/10.37134/jictie.vol12.2.10.2025

Keywords:

Deep learning, cloud service recommender systems, hybrid models, attention mechanisms, knowledge graphs

Abstract

Deep Learning (DL) offers a promising solution for cloud service recommender systems (CSRS) by addressing data sparsity issues and helping users overcome cold-start problems while managing dynamic preferences. The study follows the PRISMA 2020 guidelines in conducting a systematic literature review (SLR) of DL-based CSRS advancements from 2019 to 2025. The research started with 412 electronic records from Scopus, ScienceDirect, Springer, Wiley, and other sources before completing thorough screenings that narrowed the search to 23 appropriate studies. The integration of hybrid neural networks, along with attention mechanisms and knowledge graph integration, demonstrates improved accuracy for implementing the multi-criteria recommendations based on the quality-of-service prediction, the resource allocation, and the personalised service selection. Real-time scalability limitations and constraints regarding explainability remain despite current developments. Future research should examine federated learning systems and edge-cloud integration elements with ethical AI frameworks in place. The review delivers a structured overview that guides researchers and practitioners who want to enhance cloud service recommendations by employing modern methodologies.

Downloads

Download data is not yet available.

References

Achar, S., Faruqui, N., Bodepudi, A., & Reddy, M. (2023). Confimizer: A novel algorithm to optimise cloud resource by confidentiality-cost trade-off using BiLSTM network. IEEE Access, 11, 89205–89217. https://doi.org/10.1109/ACCESS.2023.3305506

Ali, C. S. M., & Zeebaree, S. R. M. (2025). Cloud-Based Web Applications for Enterprise Systems: A review of AI and marketing innovations. Asian Journal of Research in Computer Science, 18(4), 427–451. https://doi.org/10.9734/ajrcos/2025/v18i4630

Al-Sayed, M. M. (2022). Workload time series cumulative prediction mechanism for cloud resources using neural machine translation technique. Journal of Grid Computing, 20(2), 16. https://doi.org/10.1007/s10723-022-09607-0

Athamakuri, S. S. K. K., Thiruveedula, J., & Bindewari, D. S. (2025). The impact of cloud computing on e-commerce performance and innovation: An empirical study. International Journal of Research in Modern Engineering & Emerging Technology, 13(3), 328–350. https://doi.org/10.63345/ijrmeet.org.v13.i3.21

Bharathi, S. T., Balasubramanian, C., & Shanmugapriya, S. (2025). Enhancing cloud resource allocation with TrustFusionNet using Random Forests and Convolutional Neural Networks. Tehnicki Vjesnik - Technical Gazette, 32(1). https://doi.org/10.17559/TV-20240521001625

Boulanger, D., Dewan, M. A. A., Kumar, V. S., & Lin, F. (2021). Lightweight and interpretable detection of affective engagement for online learners. Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress, 176–184. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00040

Chudasama, V., & Bhavsar, M. (2020). A dynamic prediction for elastic resource allocation in hybrid cloud environment. Scalable Computing: Practice and Experience, 21(4), 661–672. https://doi.org/10.12694/scpe.v21i4.1805

Dang, D., Chen, C., Li, H., Yan, R., Guo, Z., & Wang, X. (2021). Deep knowledge-aware framework for web service recommendation. The Journal of Supercomputing, 77(12), 14280–14304. https://doi.org/10.1007/s11227-021-03832-2

Dogani, J., Khunjush, F., Mahmoudi, M. R., & Seydali, M. (2023). Multivariate workload and resource prediction in cloud computing using CNN and GRU by attention mechanism. The Journal of Supercomputing, 79(3), 3437–3470. https://doi.org/10.1007/s11227-022-04782-z

Jeddi, S., & Sharifian, S. (2019). A water cycle optimized wavelet neural network algorithm for demand prediction in cloud computing. Cluster Computing, 22(4), 1397–1412. https://doi.org/10.1007/s10586-019-02916-2

Kambhampati, K., & Srinagesh, A. (2019). Prediction of SLA Violation in Cloud Resource Allocation using Machine Learning based Back Propagation Neural Network (BPNN). International Journal of Innovative Technology and Exploring Engineering, 8(8).

Karimunnisa, S., & Pachipala, Y. (2024). Deep learning-driven workload prediction and optimization for load balancing in cloud computing environment. Cybernetics and Information Technologies, 24(3), 21–38. https://doi.org/10.2478/cait-2024-0023

Khodabandehlou, S., Hashemi Golpayegani, S. A., & Zivari Rahman, M. (2020). An effective recommender system based on personality traits, demographics and behavior of customers in time context. Data Technologies and Applications, 55(1), 149–174. https://doi.org/10.1108/DTA-04-2020-0094

Lebib, F. Z., & Kichou, S. (2024). Recommending cloud services based on social trust: An overview. Concurrency and Computation: Practice and Experience, 36(25), e8262. https://doi.org/10.1002/cpe.8262

Maiyza, A. I., Korany, N. O., Banawan, K., Hassan, H. A., & Sheta, W. M. (2023). VTGAN: Hybrid generative adversarial networks for cloud workload prediction. Journal of Cloud Computing, 12(1), 97. https://doi.org/10.1186/s13677-023-00473-z

Mohammed, A. M., Haytamy, S. S. A., & Omara, F. A. (2023). Location-aware deep learning-based framework for optimizing cloud consumer quality of service-based service composition. International Journal of Electrical and Computer Engineering (IJECE), 13(1), 638. https://doi.org/10.11591/ijece.v13i1.pp638-650

Naveen Kumar, M. R., Annappa, B., & Yadav, V. (2025). Efficient Kalman filter based deep learning approaches for workload prediction in cloud and edge environments. Computing, 107(1), 10. https://doi.org/10.1007/s00607-024-01373-z

Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient time-series forecasting using neural network and opposition-based coral reefs optimization. International Journal of Computational Intelligence Systems, 12(2), 1144. https://doi.org/10.2991/ijcis.d.190930.003

Page, M. J., Mckenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-wilson, E., Mcdonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 1–9. https://doi.org/10.1136/bmj.n71

Predić, B., Jovanovic, L., Simic, V., Bacanin, N., Zivkovic, M., Spalevic, P., Budimirovic, N., & Dobrojevic, M. (2024). Cloud-load forecasting via decomposition-aided attention recurrent neural network tuned by modified particle swarm optimization. Complex & Intelligent Systems, 10(2), 2249–2269. https://doi.org/10.1007/s40747-023-01265-3

Qiu, G., Song, C., Jiang, L., & Guo, Y. (2022). Multi-view hybrid recommendation model based on deep learning. Intelligent Data Analysis, 26(4), 977–992. https://doi.org/10.3233/IDA-215988

Raman, N., Wahab, A. B., & Chandrasekaran, S. (2021). Computation of workflow scheduling using backpropagation neural network in cloud computing: A virtual machine placement approach. The Journal of Supercomputing, 77(9), 9454–9473. https://doi.org/10.1007/s11227-021-03648-0

Rawat, P. S. (2024). Virtual machine allocation using optimal resource management approach. Wireless Personal Communications, 137(2), 1313–1332. https://doi.org/10.1007/s11277-024-11465-w

Sahu, P., Raghavan, S., & Chandrasekaran, K. (2021). Ensemble deep neural network based quality of service prediction for cloud service recommendation. Neurocomputing, 465, 476–489. https://doi.org/10.1016/j.neucom.2021.08.110

Salari-Hamzehkhani, B., Akbari, M., & Safi-Esfahani, F. (2025). Introducing an improved deep reinforcement learning algorithm for task scheduling in cloud computing. The Journal of Supercomputing, 81(1), 295. https://doi.org/10.1007/s11227-024-06668-8

Samadhiya, S., & Ku, C. C.-Y. (2024). Hybrid approach to improve recommendation of cloud services for personalized qos requirements. Electronics, 13(7), 1386. https://doi.org/10.3390/electronics13071386

Saxena, D., Kumar, J., Singh, A. K., Ieee, S., & Schmid, S. (2023). Performance analysis of machine learning centered workload prediction models for cloud. IEEE Transactions on Parallel and Distributed Systems, 34(4), 1313–1330. https://doi.org/10.1109/TPDS.2023.3240567

Singh, V. P., Pandey, M. K., Singh, P. S., & Karthikeyan, S. (2020). An LSTM based time series forecasting framework for web services recommendation. Computación y Sistemas, 24(2). https://doi.org/10.13053/cys-24-2-3402

Suresh Babu, K. T., Ashok Tingare, B., Khedkar, V., Diwan, T. D., William, P., & Badholia, A. (2024). Deep learning and its applications: A novel approach to machine learning with encoding algorithms. 2024 International Conference on Intelligent and Innovative Practices in Engineering and Management, 1–6. https://doi.org/10.1109/IIPEM62726.2024.10925693

Wu, R.-C. (2024). Developing a deep learning-based multimodal intelligent cloud computing resource load prediction system. EAI Endorsed Transactions on Internet of Things, 10. https://doi.org/10.4108/eetiot.6296

Xia, L., Huang, C., Xu, Y., Dai, P., & Bo, L. (2024). Multi-behavior graph neural networks for recommender system. IEEE Transactions on Neural Networks and Learning Systems, 35(4), 5473–5487. https://doi.org/10.1109/TNNLS.2022.3204775

Yemi Hussain, N. (2024). Deep learning architectures enabling sophisticated feature extraction and representation for complex data analysis. International Journal of Innovative Science and Research Technology, 2290–2300. https://doi.org/10.38124/ijisrt/IJISRT24OCT1521

Zheng, H., Xu, K., Zhang, M., Tan, H., & Li, H. (2024). Efficient resource allocation in cloud computing environments using AI-driven predictive analytics. Applied and Computational Engineering, 82(1), 17–23. https://doi.org/10.54254/2755-2721/82/2024GLG0055

Downloads

Published

25-10-2025

How to Cite

Md Mizanur, R. ., Mohamad @Razak, N. A., Muhamad Adnan, M. H. . ., & Hasan, M. M. (2025). A Systematic Literature Review on Deep Learning Approaches for Cloud Service Recommender Systems. Journal of ICT in Education, 12(2), 149-162. https://doi.org/10.37134/jictie.vol12.2.10.2025