Unlocking the Potential of Calophyllum Xanthones: A Review on Antileukemic Activity and Molecular Docking Insights

Authors

  • Nur Nabilah Mohd Zaini Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
  • Wan Mohd Nuzul Hakimi Wan Salleh Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
  • Abubakar Siddiq Salihu Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Department of Pure and Industrial Chemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina, Nigeria
  • Bunleu Sungthong Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham, 44150, Thailand

DOI:

https://doi.org/10.37134/jsml.vol13.1.15.2025

Keywords:

Calophyllum, xanthone, leukemia, cyclin-dependent kinase 4, matrix metalloproteinase-2, molecular docking

Abstract

The genus Calophyllum, a member of the Calophyllaceae family, has garnered increasing scientific attention due to its pharmacologically active constituents, particularly xanthones. This review consolidates current findings on xanthones isolated from Malaysian Calophyllum species, emphasizing their antileukemic potential. A total of 72 xanthones have been reported across various species, with the majority derived from stem bark and roots. Several xanthones such as caloxanthone B, ananixanthone, and brasixanthone B exhibit remarkable cytotoxic activity against leukemia cell lines, notably K562. The review also evaluates molecular docking interactions of 41 structurally characterized xanthones with two critical leukemia-related protein targets: cyclin-dependent kinase 4 (CDK4) and matrix metalloproteinase-2 (MMP2). Docking simulations revealed that calozeyloxanthone, xanthochymone B, and caloxanthone J demonstrated strong binding affinities toward these targets, by surpassing standard inhibitors abemaciclib and batimastat in silico. These findings corroborate existing in vitro data and highlight the therapeutic potential of Calophyllum-derived xanthones as dual-target inhibitors. The review outlines key pharmacophores contributing to bioactivity and underscores the promise of Malaysian Calophyllum species as reservoirs for novel antileukemic agents. Further preclinical and clinical evaluations are warranted to validate their efficacy and develop structure-optimized derivatives for cancer therapy.

Downloads

Download data is not yet available.

References

Aminudin NI, Ahmad F, Taher M, Zulkifli RM. (2016). Cytotoxic and antibacterial activities of constituents from Calophyllum ferrugineum Ridley. Records of Natural Products, 10, 649-653.

Ampofo SA, Waterman PG. (1986). Xanthones and neoflavonoids from two Asian species of Calophyllum. Phytochemistry, 25(11), 2617-2620.

BIOVIA, Dassault Systèmes. (2021). Discovery Studio Visualizer. San Diego: Dassault Systèmes.

Bride KL, Hu H, Tikhonova A, Fuller TJ, Vincent TL, Shraim R, Li MM, Carroll WL, Raetz EA, Aifantis I, Teachey DT. (2022). Rational drug combinations with CDK4/6 inhibitors in acute lymphoblastic leukemia. Haematologica, 107(8), 1746-1757.

Cao S, Lim T, Sim K, Goh SH. (1997). A highly Prenylated Xanthone from the bark of Calophyllum Gracilipes (Guttiferae). Natural Product Research, 10(1), 55-58.

Chan KM, Hamzah R, Rahaman AA, Jong VY, Khong HY, Rajab NF, Ee GC, Inayat-Hussain SH. (2012). The pyranoxanthone Inophyllin A induces oxidative stress mediated apoptosis in Jurkat T lymphoblastic leukemia cells. Food and Chemical Toxicology, 50(8), 2916-2922.

Chen EI, Kridel SJ, Howard EW, Li W, Godzik A, Smith JW. (2002). A unique substrate recognition profile for matrix metalloproteinase-2. Journal of Biological Chemistry, 277(6), 4485-4491.

Dallakyan S, Olson AJ. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243-250.

Daud S, Cheng L, Ee G, Malek EA, Sin Teh S. (2013). Secondary metabolites from Calophyllum Sclerophyllum and Calophyllum Hoseii. The Open Conference Proceedings Journal, 4(1), 125-125.

Daud S, Ee GC, Malek EA, Ahmad Z, Hashim NM, See I, Teh SS, Ismail AA. (2016). A new pyranoxanthone from the stem bark of Calophyllum buxifolium. Chemistry of Natural Compounds, 52(5), 807-809.

Daud S, Karunakaran T, Santhanam R, Nagaratnam SR, Jong VY, Ee GC. (2020). Cytotoxicity and nitric oxide inhibitory activities of xanthones isolated from Calophyllum hosei Ridl. Natural Product Research, 35(24), 6067-6072.

Daud SB, Ee GC, Malek EA, Teh SS, See I. (2014). A new coumarin from Calophyllum hosei. Natural Product Research, 28(19), 1534-1538.

Ee GCL, Jong VYM, Sukari MA, Rahmani M, Kua AS. (2009). Xanthones from Calophyllum inophyllum. Pertanika Journal of Tropical Agricultural Science, 17(2), 307- 312.

Ee GC, Kua AS, Cheow YL, Lim CK, Jong V, Rahmani M. (2004). A new pyranoxanthone Inophyllin B from Calophyllum inophyllum. Natural Product Sciences, 10, 220-222.

Ee GC, Kua AS, Lim CK, Jong V, Lee HL. (2006). Inophyllin A, a new pyranoxanthone from Calophyllum inophyllum (Guttiferae). Natural Product Research, 20(5), 485-491.

Feng Y, Likos JJ, Zhu L, Woodward H, Munie G, McDonald JJ, Stevens AM, Howard CP, De Crescenzo GA, Welsch D, Shieh HS, Stallings WC. (2002). Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochimica et Biophysica Acta: Proteins and Proteomics, 1598(1-2), 10-23.

Ferchichi L, Derbré S, Mahmood K, Touré K, Guilet D, Litaudon M, Awang K, Hadi AH, Le Ray AM, Richomme P. (2012). Bioguided fractionation and isolation of natural inhibitors of advanced glycation end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry, 78, 98-106.

Firouz NS, Karunakaran T, Mokhtar N, Santhanam R, Jong VY M, Abu Bakar MH. (2024). Chemical constituents from the stem barks of Calophyllum recurvatum P.F. Stevens and Calophyllum andersonii P.F. Stevens, and their in-vitro hepatotoxic activity. Natural Product Research, 1-7.

García-Niño W, Estrada-Muñiz E, Valverde M, Reyes-Chilpa R, Vega L. (2017). Cytogenetic effects of Jacareubin from Calophyllum brasiliense on human peripheral blood mononucleated cells in vitro and on mouse polychromatic erythrocytes in vivo. Toxicology and Applied Pharmacology, 335, 6-15.

Goh S, Jantan I. (1991). A xanthone from Calophyllum inophyllum. Phytochemistry, 30(1), 366-367.

Gómez-Verjan JC, Rodríguez-Hernández KD, Reyes-Chilpa R. (2017). Bioactive coumarins and xanthones from Calophyllum genus and analysis of their druglikeness and toxicological properties. Studies in Natural Products Chemistry, 53, 277-307.

Gul S, Aslam K, Pirzada Q, Rauf A, Khalil AA, Semwal P, Bawazeer S, Al-Awthan YS, Bahattab OS, Al Duais MA, Thiruvengadam M. (2022). Xanthones: a class of heterocyclic compounds with anticancer potential. Current Topics in Medicinal Chemistry, 22(23), 1930-1949.

Gupta S, Gupta P. (2020). The genus Calophyllum: review of ethnomedicinal uses, phytochemistry and pharmacology. Bioactive Natural products in Drug Discovery, 8, 215-242.

Ham YP. (2018). Phytochemical and antioxidant studies of Calophyllum gracilentum. Bachelor’s Degree Thesis. Universiti Tunku Abdul Rahman.

Ismail AAF, Ee GC, Daud S, Teh SS, Hashim NM, Awang K. (2015). Venuloxanthone, a new pyranoxanthone from the stem bark of Calophyllum venulosum. Journal of Asian Natural Products Research, 17(11), 1104-1108.

Jackson B, Locksley H, Scheinmann F. (1968). Extractives from guttiferae-VII: The isolation of 6-(3,3-dimethylallyl)-1,5-dihydroxyxanthone and two related metabolites from Calophyllum scriblitifolium henderson and wyatt-smith. Tetrahedron, 24(7), 3059-3068.

Jamaluddin NA, Lian EGC, Teh SS, Sukari MA. (2013). Chemical constituents of Calophyllum teysmannii and Calophyllum lowii and their bioactivities. The Open Conference Proceedings Journal, 4(1), 126-126.

Jantan I, Mohd Yasin YH, Jalil J, Murad S, Idris MS. (2009). Antiplatelet aggregation activity of compounds isolated from Guttiferae species in human whole blood. Pharmaceutical Biology, 47(11), 1090-1095.

Jin L, Tabe Y, Kimura S, Zhou Y, Kuroda J, Asou H, Inaba T, Konopleva M, Andreeff M, Miida T. (2011). Antiproliferative and proapoptotic activity of GUT-70 mediated through potent inhibition of Hsp90 in mantle cell lymphoma. British Journal of Cancer, 104(1), 91-100.

Karunakaran T, Firouz NS, Santhanam R, Jong VY. (2020). Phytochemicals from Calophyllum macrocarpum Hook.f. and its cytotoxic activities. Natural Product Research, 36(2), 654-659.

Kawamura F, Muhamud A, Hashim R, Sulaiman O, Ohara S. (2012). Two antifungal xanthones from the heartwood of Calophyllum symingtonianum. Japan Agricultural Research Quarterly, 46(2), 181-185.

Kilus M, Samad NA, Daud S. (2023). A review of the effects of Calophyllum spp. on cancer cells. Journal of Angiotherapy, 7(1), 1-6.

Kurniawan YS, Priyangga KTA, Jumina Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. (2021). An update on the anticancer activity of xanthone derivatives: a review. Pharmaceuticals, 14(11), 1144.

Lim CK, Ham YP, Lim LQ, Jong VYM. (2019). 4-Alkylcoumarins and a phloroglucinol from the stem bark of Calophyllum gracilentum. Phytochemistry Letters, 30, 99-102.

Lim LQ. (2018). Chemical compounds from the stem bark of Calophyllum gracilentum and their antioxidant activities. Bachelor’s Degree Thesis. Universiti Tunku Abdul Rahman.

Lim CK, Hemaroopini S, Gan SY, Loo SM, Low JR, Jong VY, Soo HC, Leong CO, Mai CW, Chee CF. (2016). In vitro cytotoxic activity of isolated compounds from Malaysian Calophyllum species. Medicinal Chemistry Research, 25(8), 1686-1694.

Lizazman MA, Jong VY, Chua P, Lim WK, Karunakaran T. (2022a). Phytochemicals from Calophyllum canum hook F. ex T. Anderson and their neuroprotective effects. Natural Product Research, 37(12), 2043-2048.

Lizazman MA, Karunakaran T, Jong VY. (2022b). Trapezifolixanthone as a common constituent in the genus Calophyllum: an insight review. Biocatalysis and Agricultural Biotechnology, 44, 102471.

Mah SH, Ee GC, Teh SS, Sukari MA. (2015a). Calophyllum inophyllum and Calophyllum soulattri source of anti-proliferative xanthones and their structure-activity relationships. Natural Product Research, 29(1), 98-101.

Mah SH, Ee GC, Teh SS, Sukari MA. (2015b). Antiproliferative xanthone derivatives from Calophyllum inophyllum and Calophyllum soulattri. Pakistan Journal of Pharmaceutical Sciences, 28(2), 425-429.

Mah SH, Ee GCL, Teh SS, Rahmani M, Yang Mooi LA, Go R. (2012). Phylattrin, a new cytotoxic xanthone from Calophyllum soulattri. Molecules, 7(7), 8303-11.

Mah S, Ee G, Teh S. (2014). Antiproliferative properties of xanthones from Calophyllum inophyllum and Calophyllum soulattri towards human cancer cell lines. Planta Medica, 80(16), P1L101.

Mah SH, Ee GC, Rahmani M, Taufiq-Yap YH, Sukari MA, Teh SS. (2011). A new pyranoxanthone from Calophyllum soulattri. Molecules, 16(5), 3999-4004.

Mahato S, More S, Taral S, Chakrabarty T, Khan MA. (2024). Calophyllum L.: An important tropical element in the monsoon-influenced ancient Siwalik-forest of eastern Himalaya. Review of Palaeobotany and Palynology, 331, 105215.

Mokhtar N, Karunakaran T, Santhanam R, Abu Bakar MH, Jong VYM. (2024). Phenolics and triterpenoids from stem bark of Calophyllum lanigerum var. austrocoriaceum (Whitmore) P.F. Stevens and their cytotoxic activities. Natural Product Research, 38(5), 873-878.

Morris GM, Lim-Wilby M. (2008). Molecular docking. Methods in Molecular Biology, 443, 365-382.

Nasir NM, Rahmani M, Shaari K, Kassim NK, Go R, Stanslas J, Jeyaraj EJ. (2013). Xanthones from Calophyllum gracilipes and their cytotoxic activity. Sains Malaysiana, 42(9), 1261-1266.

Nasir NM, Rahmani M, Shaari K, Ee GC, Go R, Kassim NK, Muhamad SN, Iskandar MJ. (2011). Two new Xanthones from Calophyllum nodusum (Guttiferae). Molecules, 16(11), 8973-8980.

Nauman MC, Tocmo R, Vemu B, Veenstra JP, Johnson JJ. (2021). Inhibition of CDK2/CyclinE1 by xanthones from the mangosteen (Garcinia mangostana): a structure-activity relationship study. Natural Product Research, 35(23), 5429-5433.

Niu J, Peng D, Liu L. (2022). Drug resistance mechanisms of acute myeloid leukemia stem cells. Frontiers in Oncology, 12, 896426.

Ong H, Mahlia T, Masjuki H, Norhasyima R. (2011). Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renewable and Sustainable Energy Reviews, 15(8), 3501-3515.

Oo W. (2018). Pharmacological properties of Calophyllum inophyllum - updated review. International Journal of Photochemistry and Photobiology, 2(1), 28.

Oriola AO, Kar P. (2024). Naturally occurring xanthones and their biological implications. Molecules, 29(17), 4241.

Sahimi MSM, Ee GCL, Mahaiyiddin AG, Daud S, Teh SS, See I, Sukari MA. (2015). A new natural product compound benjaminin from Calophyllum benjaminum. Pertanika Journal of Tropical Agricultural Science, 38(1), 1-6.

Sahimi MSM, Ee GCL, Teh SS, Ismail AAF, Sukari MA. (2013). Chemical constituents of Calophyllum Benjaminum and Calophyllum Javanicum and their Bioactivities. The Open Conference Proceedings Journal, 4(1), 127-127.

Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E. (2011). Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Current Molecular Medicine, 11(8), 666-677.

Taher M, Idris MS, Ahmad F, Arbain D. (2005). A polyisoprenylated ketone from Calophyllum enervosum. Phytochemistry, 66(6), 723-726.

Taher M, Salleh WMNHW, Alkhamaiseh SI, Ahmad F, Rezali MF, Susanti D, Hasan CM. (2020). A new xanthone dimer and cytotoxicity from the stem bark of Calophyllum canum. Zeitschrift für Naturforschung C, 76, 87-91.

Tee KH, Ee GC, Ismail IS, Karunakaran T, Teh SS, Jong VY, Nor SMM. (2018). A new coumarin from stem bark of Calophyllum wallichianum. Natural Product Research, 32(21), 2565-2570.

Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 4574.

Trott O, Olson AJ. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461.

Van Doren SR, Marcink TC, Koppisetti RK, Jurkevich A, Fulcher YG. (2017). Peripheral membrane associations of matrix metalloproteinases. Biochimica et Biophysica Acta: Molecular Cell Research, 1864, 1964-1973.

Vittaya L, Chalad C, Ratsameepakai W, Leesakul N. (2023). Phytochemical characterization of bioactive compounds extracted with different solvents from Calophyllum inophyllum flowers and activity against pathogenic bacteria. South African Journal of Botany, 154, 346-355.

Wei KL, Zamakshshari NH, Ee GCL, Mah SH, Nor SMM. (2018). Isolation and structural modifications of ananixanthone from Calophyllum teysmannii and their cytotoxic activities. Natural Product Research, 32(18), 2147-2151.

Yimdjo MC, Azebaze AG, Nkengfack AE, Meyer AM, Bodo B, Fomum ZT. (2004). Antimicrobial and cytotoxic agents from Calophyllum inophyllum. Phytochemistry, 65(20), 2789-2795.

Zailan AAD, Karunakaran T, Santhanam R, Yaakop SA, Mohan S, Abu Bakar MH, Jong YMV. (2024). Phytochemicals from the stem bark of Calophyllum havilandii P.F. Stevens and their biological activities. Chemistry & Biodiversity, 21(3), e202301936.

Zakaria MB, Vijayasekaran IZ, Muhamad NA. (2014). Anti-inflammatory activity of Calophyllum inophyllum fruits extracts. Procedia Chemistry, 13, 218-220.

Zamakshshari NH, Ee GCL, Ismail IS, Ibrahim Z, Mah SH. (2019). Cytotoxic xanthones isolated from Calophyllum depressinervosum and Calophyllum buxifolium with antioxidant and cytotoxic activities. Food and Chemical Toxicology, 133, 110800.

Zamakshshari NH, Ee GCL, Teh SS, Daud S, Karunakaran T, Safinar I. (2016). Natural product compounds from Calophyllum depressinervosum. Pertanika Journal of Tropical Agricultural Science, 39(2), 249-255.

Downloads

Published

2025-06-28

How to Cite

Zaini, N. N. M., Salleh, W. M. N. H. W. ., Salihu, A. S. ., & Sungthong, B. . (2025). Unlocking the Potential of Calophyllum Xanthones: A Review on Antileukemic Activity and Molecular Docking Insights. Journal of Science and Mathematics Letters, 13(1), 168-186. https://doi.org/10.37134/jsml.vol13.1.15.2025

Similar Articles

1-10 of 43

You may also start an advanced similarity search for this article.