Phytochemical Influence of Scutellaria iscanderi L. on Zinc Oxide Nanoparticle Biosynthesis

Authors

DOI:

https://doi.org/10.37134/jsml.vol13.2.5.2025

Keywords:

Zinc oxide nanoparticles (ZnO-NPs), green synthesis, Scutellaria iscanderi, amino acids, carbohydrates, flavonoids

Abstract

The rapid development of nanotechnology requires environmentally friendly and biocompatible approaches for the synthesis of nanomaterials with stable physicochemical properties. Green synthesis using plant extracts provides a sustainable alternative due to their natural biomolecules that initiate and regulate nanoparticle formation. This study aimed to synthesize zinc oxide nanoparticles (ZnO-NPs) using the extract of Scutellaria iscanderi L. and to investigate the role of its phytochemical components in nanoparticle formation and stabilization. ZnO-NPs were synthesized via a biogenic route employing the aqueous extract of S. iscanderi. The influence of amino acids, carbohydrates, and flavonoids in reduction and stabilization was evaluated, and the obtained nanoparticles were characterized using modern analytical techniques. Amino acids and carbohydrates facilitated nanoparticle reduction and controlled growth, while flavonoids acted as natural stabilizers, preventing aggregation and providing antioxidant protection. Characterization confirmed the formation of stable ZnO-NPs with desirable physicochemical properties. The extract of S. iscanderi effectively mediated the green synthesis of ZnO-NPs through the synergistic action of its biomolecules. These findings highlight the potential of S. iscanderi-derived nanoparticles for applications in pharmaceutical, medical, and environmental fields.

Downloads

Download data is not yet available.

References

Akşit H, Gergin Ö. (2025). Synthesis and antimicrobial evaluation of silver nanoparticles mediated by Alchemilla erzincanensis. Journal of Science and Mathematics Letters, 13(2), 48-56. doi:10.37134/jsml.vol13.2.4.2025

Al-darwesh MY, Ibrahim SS, Mohammed MA. (2024). A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results in Chemistry, 7, 101368. doi:10.1016/j.rechem.2024.101368

Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. (2012). Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. International Journal of Nanomedicine, 6003-6009. doi:10.2147/IJN.S35347

Buniyamin I, Asli NA, Eswar KA, Syed Abd Kadir SAIA, Saiman A, Idorus MY, Mahmood MR, Khusaimi Z. (2024). Biosynthesis of Tin(IV) Oxide nanoparticles (SnO2 NPs) via Chromolaena odorata leaves: The influence of heat on the extraction procedure. Journal of Science and Mathematics Letters, 12(2), 142-150. doi:10.37134/jsml.vol12.2.11.2024

Cohen SA, Strydom DJ. (1988). Amino acid analysis utilizing phenylisothiocyanate derivatives. Analytical Biochemistry, 174(1), 1-16. doi:10.1016/0003-2697(88)90512-x.

Haji BS, Barzinjy AA, Abbas AO, Kaygili O, Mousa MS. (2025). Green synthesis of ZnO nanoparticles using Citrullus lanatus fruit extract and their potential for microwave absorption. Nano-Structures and Nano-Objects, 43, 101502. doi:10.1016/j.nanoso.2025.101502

Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 18(1), 172. doi:10.1186/s12951-020-00704-4

Khan I, Saeed K, Khan I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. doi:10.1016/j.arabjc.2017.05.011

Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. (2025). A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co3O4 and TiO2) nanoparticles using plant extracts for developing antimicrobial properties. Nanoscale Advances, 7(9), 2446-2473. doi:10.1039/d5na00037h

Liu H, Huang B, Wang Z, Qin X, Zhang X, Wei J, Dai Y, Wang P, Whangbo MH. (2010). Amino acid-assisted synthesis of ZnO twin-prisms and functional group's influence on their morphologies. Journal of Alloys and Compounds, 507(1), 326-330. doi: 10.1016/j.jallcom.2010.07.192

Mahakal S, Pathan HM, Prasad M, Rondiya S, Patole SP, Jadkar SR. (2023). Modification in toxicity of l-histidine-incorporated ZnO nanoparticles toward Escherichia coli. ACS Omega, 8(38), 34354-34363. doi:10.1021/acsomega.3c01183

Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. (2014). "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1), 35-44.

Molina R, Al-Salama Y, Jurkschat K, Dobson PJ, Thompson IP. (2011). Potential environmental influence of amino acids on the behavior of ZnO nanoparticles. Chemosphere, 83(4), 545-551. doi:10.1016/j.chemosphere.2010.12.020

Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6, 411-414. doi:10.1007/s11051-004-6575-2

Rajiv P, Rajeshwari S, Venckatesh R. (2013). Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 384-387. doi:10.1016/j.saa.2013.04.072

Ramesh M, Anbuvannan M, Viruthagiri G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864-870. doi:10.1016/j.saa.2014.09.105

Sandmann A, Kompch A, Mackert V, Liebscher CH, Winterer M. (2015). Interaction of L-cysteine with ZnO: structure, surface chemistry, and optical properties. Langmuir, 31(21), 5701-5711. doi:10.1021/la504968m

Sandra R, Martins L. (2021). Antioxidant activity as an indicator of the efficiency of plant extract‑mediated synthesis of zinc oxide nanoparticles. Antioxidants, 12(4), 784. doi:10.3390/antiox12040784

Shankar SS, Ahmad A, Pasricha R, Sastry M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13(7), 1822-1826. doi:10.1039/B303808B

Shermatova IB, Rizayev KS. (2025). Technology of obtaining and studying the process of green synthesis with gold nanoparticles. Journal of Neonatal Surgery, 14(22), 529-534.

Singh B, Moudgil L, Singh G, Kaura A. (2018). Amino acid-assisted synthesis of zinc oxide nanostructures. In AIP Conference Proceedings, 1953(1), 030204. doi:10.1063/1.5032539

Singh P, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16(1), 84. doi:10.1186/s12951-018-0408-4

Singh P, Hamid M, Singh H, Srivastava S. (2022). Applications of green synthesis of nanoparticles using microorganisms in food and dairy products: review. Processes, 13(5), 1560. doi:10.3390/pr13051560

Downloads

Published

2025-08-25

How to Cite

Sagdullayev, S., Shermatova, I., Xusniddinova, A., Tayirova, D., & Zakirova, R. . (2025). Phytochemical Influence of Scutellaria iscanderi L. on Zinc Oxide Nanoparticle Biosynthesis. Journal of Science and Mathematics Letters, 13(2), 57-71. https://doi.org/10.37134/jsml.vol13.2.5.2025

Similar Articles

1-10 of 53

You may also start an advanced similarity search for this article.