Outlining Probable Fundamental Doctrine and Relations to Disasters in the Continental Crust

Authors

  • Bryan Raveen Nelson Institut Biodiversiti Tropika dan Pembangunan Lestari, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Azi Azeyanty Jamaludin Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
  • Salwa Shahimi Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Ju Lian Chong Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Lusita Meilana Center for Coastal and Marine Resources Studies, International Research Institute for Maritime, Ocean and Fisheries, IPB University, Bogor 16689, West Java, Indonesia
  • Jayaraj Vijaya Kumaran Faculty of Earth Science, Universiti Malaysia Kelantan, UMK Jeli Campus, 17600 Jeli, Kelantan, Malaysia
  • Harris C. Raj Kumar Institut Biodiversiti Tropika dan Pembangunan Lestari, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Rasha Ghaleb Ahmad Moqbel Institut Biodiversiti Tropika dan Pembangunan Lestari, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Karri Sharon Institut Biodiversiti Tropika dan Pembangunan Lestari, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Abdul Jalal Khan Chowdhury Sustainable Ocean Management, MIA Corporation, 2700 Boul Laurier Québec, QC, G1V 2L8 Canada
  • Hassan Ibrahim Sheikh Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.37134/jsml.vol14.1.2.2026

Keywords:

spatial, development, energy, structure, material, vibration

Abstract

With aim to address impacts of penetration points by human structures (hard points), vegetation (multi-point) and slope or hills (continuous) towards crustal faults, doctrine equations like Archimedes, relative centrifugal force, square cube, Newtonian, Bernoulli, kinetic and Coriolis and were tested using weight, area and height. Newtonian energy was well distributed with area in 2-dimension layout. However, the square-cube law applies to nature and focus was on 3-dimentional forms. Aboveground weight was converted into mass by relative centrifugal force, a down-ward vertical spiral that functions with Coriolis to settle crustal matter within their layers. The aboveground weight causes the belowground layer to thicken. While human structures are 3-dimensional, have spaces and rely on supporting beams as well as hard points to stabilize, under the same vertical spiral downward motion, pronate and supinate zones develop beneath the structure. This repulsion causes adjacent crustal materials to become displaced and move upward (180°), similar to the expression of Archimedes. Eventually, crustal materials beneath human structures vibrate to resettle but, because their composition was already mixed, slips, cracks or voids continuously develop. Overall, the downward flow of kinetic vis-à-vis sideward repulsion becomes larger with height and the resultant voids partake a bubble-like motion in the crust. Overall, land clearing spills crustal materials between layers and the effects of mixing adds risk of contact with liquid medium. Such contact causes weathering, the formation of voids and eventually faults. Built environments need to evaluate belowground crustal matter preferably using the doctrines tested to avoid timely disasters.

Downloads

Download data is not yet available.

References

Abraik E, Assaf J. (2021). Impact of ground motion duration on concrete shear walls reinforced with different types of shape memory alloy rebars. Structures, 33, 2739-2754. doi:10.1016/j.istruc.2021.06.039

Alnaser Y, Alkhafagi Q. (2020). Soil surface crust: its significance, types and mechanics of formation. a review. Mesopotamia Journal of Agriculture, 48(4), 75-0. doi:10.33899/magrj.2020.128485.1076

Alonso J, González-Arteaga J, Moya M, Yustres A, Navarro V. (2020). Atmosphere-soil-structure interaction: Isolated building foundation movements induced by environmental loads. Computers and Geotechnics, 119, 103356. doi:10.1016/j.compgeo.2019.103356

Amonte C, Melián GV, Asensio-Ramos M, Pérez NM, Padrón E, Hernández PA, D’auria L. (2022). Hydrogeochemical temporal variations related to the recent volcanic eruption at the Cumbre Vieja Volcano, La Palma, Canary Islands. Frontiers in Earth Science, 10, 1003890. doi:10.3389/feart.2022.1003890

Anselm AJ. (2012). Earth shelters; A review of energy conservation properties in earth sheltered housing. Energy Conservation, 31, 125-48. doi:10.5772/51873

Artyushkov EV. (1973). Stresses in the lithosphere caused by crustal thickness inhomogeneities. Journal of Geophysical Research, 78(32), 7675-7708. doi:10.1029/JB078i032p07675

Bardgett RD, Wardle DA, Yeates GW. (1998). Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30(14), 1867-1878. doi:10.1016/S0038-0717(98)00069-8

Biggs J, Anantrasirichai N, Albino F, Lazecky M, Maghsoudi Y. (2022). Large-scale demonstration of machine learning for the detection of volcanic deformation in Sentinel-1 satellite imagery. Bulletin of Volcanology, 84(12), 100. doi:10.1007/s00445-022-01608-x

Bozsaky D. (2015). Historical Development and Special Building Structures of In-earth Embedded Houses. Acta Technica Jaurinensis, 8(2), 113-130. doi:10.14513/actatechjaur.v8.n2.332

Bresson LM, Moran CJ, Assouline S. (2004). Use of bulk density profiles from X‐radiography to examine structural crust models. Soil Science Society of America Journal, 68(4), 1169-1176. doi:10.2136/sssaj2004.1169

Ca'Zorzi M, Dedola L, Georgiadis G, Stracca L, Strasser G. (2020). Monetary policy and its transmission in a globalised world (No. 2407). ECB Working Paper. doi:10.2139/ssrn.3599928

Cenki-Tok B, Rey PF, Arcay D. (2020). Strain and retrogression partitioning explain long-term stability of crustal roots in stable continents. Geology, 48(7), 658-662. doi:10.1130/G47301.1

Eriksen TH. (2023). Clashing scales and accelerated change: two cases from Norway. Anthropologie Sociale, 1, 1-18. doi:10.3167/saas.2023.04132302

Frantzeskaki N, McPhearson T, Collier MJ, Kendal D, Bulkeley H, Dumitru A, Walsh C, Noble K, Van Wyk E, Ordóñez C, Pintér L. (2019). Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience, 69(6), 455-466. doi:10.1093/biosci/biz042

Ghasemi Y, Emborg M, Cwirzen, A. (2019). Exploring the relation between the flow of mortar and specific surface area of its constituents. Construction and Building Materials, 211, 492-501. doi:10.1016/j.conbuildmat.2019.03.260

Gottschau M, Haverkort H, Matzke K. (2018). Reptilings and space-filling curves for acute triangles. Discrete & Computational Geometry, 60, 170-199. doi:10.1007/s00454-017-9953-0

Güçhan NŞ. (2018). History and characteristics of construction techniques used in traditional timber Ottoman houses. International Journal of Architectural Heritage, 12(1), 1-20. doi:10.1080/15583058.2017.1336811

Guo XY, Li J, Jia YH, Yuan GL, Zheng JL, Liu ZJ. (2023). Geochemistry process from weathering rocks to soils: perspective of an ecological geology survey in China. Sustainability, 15(2), 1002. doi:10.3390/su15021002

Hamdani RS, Hadi SP, Rudiarto I. (2021). Progress or Regress? A systematic review on two decades of monitoring and addressing land subsidence hazards in Semarang City. Sustainability, 13(24), 13755. doi:10.3390/su132413755

Haney TJ. (2022). Development, responsibility, and the creation of urban hazard risk. City & Community, 21(1), 21-41. doi:10.1177/15356841211046265

Hayman RM, Casali G, Wilson JJ, Jeffery KJ. (2015). Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding. Frontiers in Psychology, 6, 925. doi:10.3389/fpsyg.2015.00925

Kaufmann G. (2014). Geophysical mapping of solution and collapse sinkholes. Journal of Applied Geophysics, 111, 271-288. doi:10.1016/j.jappgeo.2014.10.011

Khodadadi A. (2022). Basic Concepts of Structural Design for Architecture Students. Portland State University Library, Oregon. doi:10.15760/pdxopen-31

Lajtai EZ. (1991). Time-dependent behaviour of the rock mass. Geotechnical & Geological Engineering, 9, 109-124. doi:10.1007/BF00881253

Lifton JJ, Tan ZJ, Goh B, Mutiargo B. (2022). On the uncertainty of porosity measurements of additively manufactured metal parts. Measurement, 188, 110616. doi:10.1016/j.measurement.2021.110616

Lu W, Zhu Z, He Y, Que X. (2021). Strength characteristics and failure mechanism of a columnar jointed rock mass under uniaxial, triaxial, and true triaxial confinement. Rock Mechanics and Rock Engineering, 54, 2425-2439. doi:10.1007/s00603-021-02400-7

Ma J, Wang P, Liang W. (2025). Space–Time Stress Variations near the East Anatolian Fault Zone and the Triggering Relationship of Earthquakes. Applied Sciences, 15(5), 2759. doi:10.3390/app15052759

Manners RB, Wilcox AC, Kui L, Lightbody AF, Stella JC, Sklar LS. (2015). When do plants modify fluvial processes? Plant‐hydraulic interactions under variable flow and sediment supply rates. Journal of Geophysical Research: Earth Surface, 120(2), 325-345. doi:10.1002/2014JF003265

Marshall D, Worthing D. (2008). The construction of houses. Estates Gazette, Routledge, London. doi:10.4324/9780080971018

McIntyre DS. (1958). Permeability measurements of soil crusts formed by raindrop impact. Soil science, 85(4), 185-189. doi:10.1097/00010694-195804000-00002

Miller MS, Allam AA, Becker TW, Di Leo JF, Wookey J. (2013). Constraints on the tectonic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis. Earth and Planetary Science Letters, 375, 234-243. doi:10.1016/j.epsl.2013.05.036

Mohazzab P. (2017). Archimedes’ principle revisited. Journal of Applied Mathematics and Physics, 5(4), 836-843. doi:10.4236/jamp.2017.54073

Moulin M, Leprêtre A, Verrier F, Schnürle P, Evain M, de Clarens P, Thompson J, Dias N, Afilhado A, Loureiro A, Aslanian D. (2023). From the Lebombo Monocline to the Mozambique Deep Basin, using combined wide-angle and reflection seismic data. Tectonophysics, 855, 229814. doi:10.1016/j.tecto.2023.229814

Nagaraj H, Munnas M, Sridharan A. (2010). Swelling behavior of expansive soils. International Journal of Geotechnical Engineering, 4(1), 99-110. doi:10.3328/IJGE.2010.04.01.99-110

Nemčok M, Pospíšil L, Melnik A, Henk A, Doré AG, Rybár S, Sinha ST, Choudhuri M, Sharma SP, Stuart CJ, Venkatraman S. (2023). Crust first-mantle second and mantle first-crust second; lithospheric break-up scenarios along the Indian margins. Geological Society, London, Special Publications, 524(1), SP524-2021. doi:10.1144/SP524-2021-109

Pan C, Shangguan Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331, 178-185. doi:10.1016/j.jhydrol.2006.05.011

Ramamurthy T. (2004). A geo-engineering classification for rocks and rock masses. International Journal of Rock Mechanics and Mining Sciences, 41(1), 89-101. doi:10.1016/S1365-1609(03)00078-9

Raven JA. (2022). Interactions between above and below ground plant structures: mechanisms and ecosystem services. Frontiers of Agricultural Science & Engineering, 9, 197-213. doi:10.15302/J-FASE-2021433

Riyanto, S., Ayop, S. K., Purwanto, A., & Aziz, W. N. S. W. (2015). Determination of water viscosity by tracking the Brownian motion of a single particle using video microscopy. Journal of Science and Mathematics Letters, 3, 1-6.

Romkens MM, Prasad S, Parlange J. (1990). Surface seal development in relation to rainstorm intensity. Catena. Supplement (Giessen), 17, 1-11. doi:10.5555/19911953005.

Rudnick RL, Fountain DM. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3), 267-309. doi:10.1029/95RG01302

Schäffler A, Swilling M. (2013). Valuing green infrastructure in an urban environment under pressure-The Johannesburg case. Ecological Economics, 86, 246-257. doi:10.1016/j.ecolecon.2012.05.008

Setyonegoro W, Hanif M, Khoiridah S, Ramdhan M, Fauzi F, Karima S, Isnaniawardhani V, Pribadi S, Muqqodas MM, Supendi P, Ardhyastuti S. (2024). Exploring tsunami generation and propagation: A case study of the 2018 Palu earthquake and tsunami. Kuwait Journal of Science, 51(3), 100245. doi:10.1016/j.kjs.2024.100245

Shaw R, Pulhin JM, Inoue M. (2021). Disaster risk reduction, climate change adaptation, and human security: A historical perspective under the Hyogo framework and beyond. In Climate Change, Disaster Risks, and Human Security: Asian Experience and Perspectives (pp. 21-36). Cham: Springer Nature Switzerland. doi:10.1007/978-981-15-8852-5_2

Straub AM. (2021). Natural disasters don’t kill people, governments kill people:” hurricane Maria, Puerto Rico–recreancy, and ‘risk society. Natural Hazards, 105(2), 1603-1621. doi:10.1007/s11069-020-04368-z

Tang L, Wang Y, Sun Y, Chen Y, Zhao Z. (2022). A review on the failure modes of rock and soil mass under compression and the exploration about constitutive equations of rock and soil mass. Advances in Civil Engineering, 2022(1), 1-13. doi:10.1155/2022/7481767

Umar, M. F., & Shah, N. M. Newton’s Second Law on Positive Real Line ℝ. Journal of Science and Mathematics Letters, 11, 158-162. doi:10.37134/jsml.vol11.sp.17.2023

Venable C, Javernick-Will A, Liel AB. (2020). Perceptions of post-disaster housing safety in future typhoons and earthquakes. Sustainability, 12(9), 3837. doi:10.3390/su12093837

Whipple KX. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature geoscience, 2(2), 97-104. doi:10.1038/ngeo413

Winkler K, Fuchs R, Rounsevell M, Herold M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12(1), 2501. doi:10.1038/s41467-021-22702-2

Yoo M. (1981). Slip, twinning, and fracture in hexagonal close-packed metals. Metallurgical Transactions A, 12, 409-418. doi:10.1007/BF02648537

Downloads

Published

2026-01-02

How to Cite

Nelson, B. R., Jamaludin, A. A., Shahimi, S., Chong, J. L., Meilana, L., Kumaran, J. V., Kumar, H. C. R., Moqbel, R. G. A., Sharon, K., Chowdhury, A. J. K. ., & Sheikh, H. I. (2026). Outlining Probable Fundamental Doctrine and Relations to Disasters in the Continental Crust. Journal of Science and Mathematics Letters, 14(1), 15-28. https://doi.org/10.37134/jsml.vol14.1.2.2026

Similar Articles

11-20 of 105

You may also start an advanced similarity search for this article.