Predicting Carbon Monoxide Time Series Between Different Settlements Area in Malaysia Through Chaotic Approach
Peramalan Siri Masa Karbon Monoksida di antara Kawasan Berbeza Petempatan di Malaysia Melalui Pendekatan Kalut
DOI:
https://doi.org/10.37134/jsml.vol9.sp.6.2021Keywords:
Carbon Monoxide Time Series, Chaotic Approach, Phase Space Plot, Cao Method, Local Linear Approximation MethodAbstract
This research is designed to analysing and predicting the time series of Carbon Monoxide (CO) at two stations located in Petaling Jaya and Jerantut through chaotic approach. Both stations were selected to represent CO time series in the urban and rural settlements. Chaotic approach has two steps, which are to (i) detect the presence of chaotic dynamics through phase space plot and Cao method and (ii) predict the time series which is done using local linear approximation method (LLAM). Through step (i), the result from phase space plot and parameter of Cao method shown that the presence of chaotic dynamics has been detected. Therefore, the chaotic approach is used to predict the time series. While in step (ii), the results shown that the correlation coefficient value of LLAM are 0.7536 for Petaling Jaya (τ=1, =4) and 0.6946 for Jerantut (τ=1, =5) which are close to one. This shows a positive sign that chaotic approach is applicable in both types of urban and rural settlements areas. These finding are expected to help stakeholders such as Ministry of Education and Department of Environment to having a better air pollution management.
Downloads
References
Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York, NY:Springer New York.
Adenan N. H. & Noorani M.S.M. (2015). Peramalan data siri masa aliran sungai di dataran dengan menggunakan pendekatan kalut. Sains Malaysiana, 44(3), 463-471
Adenan, N. H., Hamid, N. Z. A., & Noorani, M. S. M. (2017). A pilot study of river flow prediction in urban area based on phase space reconstruction. AIP Conference Proceedings.
Ahmad, S. and N. M. Hashim (2017). Kebakaran hutan dan isu pencemaran udara di Malaysia: Kes jerebu pada Ogos 2005’. e-BANGI: Jurnal Sains Sosial dan Kemanusiaan, 1 (1), 1-19.
Albostan, A. & Önöz, B. (2015) Implementation of chaotic analysis on river discharge time series. Energ. Power Eng. 7, 81–92.
Ali N.M. & Hamid N.Z.A. 2019. Chaotic analysis for Malaysia west coast sea level: A case study of Kukup, Johor. In IOP Conferences Series: Earth and Environmental Science, 286.
Bahari M. & Hamid N.Z.A. 2019. Analysis and prediction of temperature time series using chaotic approach. In IOP Conferences Series: Earth and Environmental Science 286.
Basri, S., Mallapiang, F., Ibrahim, I. A., Syarfaini., Ibrahim, H., & Basri, S. (2017). Gambaran konsentrasi karbon monoksida dalam darah (COHb) pada mekanik general repair servis dan suku cadang dealer otomotif Makassaer. Jurnal Kesehatan Lingkungan, 3(3).
Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time, series. Physica D, 110(1).
Casdagli M. 1991. Chaos and deterministic versus stochastic non-linear modelling. Santa Fe Institute 54(2), 303-328.
DOE (2018c). Environmental quality report 2015. Department of Environment Malaysia. Enviro Knowledge Centre. https://enviro.doe.gov.my/. Last Access: 10 July 2018.
Dogruyol, S., Akbas, I., & Cakir, Z. (2018). Demographic and clinical characteristics of carbon monoxide poisoning: Data between 2014 and 2018 in Erzurum. Eurasian Journal of Toxicology, 1(1), 15-20.
Hamid, N. Z. A., & Noorani, M. S. M. (2013). An improved prediction model of ozone concentration time series based on Chaotic Approach. Wold Academy of Science, Engineering and Technology, 7(11), 206–211.
Hamid, N. Z. A., & Noorani, M. S. M. (2012). On prediction of Subang, Selangor daily rainfall data: An application of local approximation method. Jurnal Sains dan Matematik, 4(2), 49-57.
Hamid N.Z.A., Noorani M.S.M., Juneng L. & Latif M.T.(2013). Prediction of ozone concentration using nonlinear prediction method. Dlm. Proceedings of the 20th National Symposium on Mathematical Sciences, 125-131.
Hamid, N. Z. A., & Noorani, M. S. M. (2014). Suatu kajian perintis menggunakan pendekatan kalut bagi pengesanan sifat dan peramalan siri masa kepekatan PM10. Sains Malaysiana, 43(3), 475- 481.
Hamid, N. Z. A., & Noorani, M. S. M. (2017). Aplikasi model baharu penambahbaikan pendekatan kalut ke atas peramalan siri masa kepekatan ozon. Sains Malaysiana, 46(8), 1333-1339.
Ibrahim M H, Che Leh F, Adnan M & Mohd Isa N K. (20160. Pencemaran habuk di Malaysia: Mengesan taburan kosentrasi PM10 di pusat bandar, sub bandar dan pinggir bandar di Ipoh, Perak. Malaysian J. Soc. Sp. 5(5), 104.
Indira, P., Inbanathan, S. S. R., Selvaraj, R. S., & Suresh, A. A. (2016). Chaotic analysis on surface ozone measurements at tropical urban coastal station Chennai, India. IOSRD International Journal of Earth Science, 2(1), 1–8.
Jusoh, K. C., & Hamid, N. Z. A. (2020). Meramal bacaan maksimum harian nitrogen dioksida menerusi pendekatan kalut. Journal of Quality Measurement and Analysis, 16(1), 79-89.
Kamal & Mustafa, N. (2015). Studi tingkat kualitas udara pada kawasan mall Panakukang di makassar. Fakultas Kesehatan Masyarakat Universitas Hasanuddin.
Kermani M. Z, Kisi O (2015) Time series analysis on marine wind-wave characteristics using chaos theory. Ocean Eng, 100(15),46–53.
Lorenz, E. N. (1963). Deterministic non-periodic flow. Journal of Atmospheric Science, 20, 130-141.
Mashuri A., Adenan N. H. & Hamid N. Z. A (2019). Determining the chaotic dynamics of hydrological data in flood-prone area. Civil Engineering and Architecture, 7(6), 71-76.
Mazlan SM, Hamzah A, Mahmud M (2015) Kualiti udara dalam bangunan di bangunan Sains biologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia. GEOGRAFIA-Malaysian Journal of Society and Space, 11(1), 87-96.
Mirahmadizadeh A, Faramarzi H, Hadizadeh E, Moghadami M, Fardid M and Seifi A. (2016). A yearlong epidemiologic study on unintentional acute carbon monoxide poisoning in Fars province, Southwest Iran. Asia Pac J Med Toxicol, 5,15–19.
Ruslan, A. B., Hamid, N. Z. A., & Jusoh, K. C. (2020). Kajian rintis peramalan siri masa SO2 melalui pendekatan kalut di kawasan bandar. Journal of Quality Measurement and Analysis, 16(1), 17-27.
Ruslan, A. B., Hamid, N. Z. A., & Jusoh, K. C. (2020).Aplikasi Peramalan Pendekatan Kalut bahan Pencemar Siri Masa CO Menggunakan Kaedah Penambahbaikan Dalam Penentuan Parameter Bilangan k-Jiran Terdekat. Borneo International Journal eISSN 2636-9826, 2(4): 11-16
Ruslan A. B., & Hamid N. Z. A. (2019). Application of improved chaotic method in determining number of k-nearest neighbor for CO data series. International Journal of Engineering and Advanced Technology 8(6S3), 10-14.
Sircar, K., Clower, J., M. k. Shin, C. Bailey, M. King and F. Yip, Am. J. Emerg. Med., (2015). Carbon monoxide poisoning deaths in the United States, 1999 to 2012. The American Journal of Emergency Medicine, 33(9), 1140–1145.
Sivakumar, B. (2002). A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology, 258(1-4), 149–162.
Velickov, S. (2004). Nonlinear Dynamics and Chaos with Application to Hydrodynamics and Hydrological Modelling. Delft University of Technology, Netherlnds.
Wahyuni, E., Darundiati, Y. H., & Setiani, O (2018). Analisa risiko kesehatan lingkungan gas karbon monoksida pada pedagang kaki lima (Studi Kasus Jalan Setiabudi Semarang). Jurnal Kesehatan Masyarakat, 6(6), 2356-3346.
Zaim, W. N. A. W. M., & Hamid, N. Z. A. (2017). Peramalan bahan pencemar ozon O3 di Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia mengikut monsun dengan menggunakan pendekatan kalut. Sains Malaysiana, 46(12), 2523-2528.