Prediction of Water Level Time Series Data for Dam at Selangor using Chaotic Approach and Local Linear Approximation Method
Peramalan Siri Masa Aras Sungai Empangan di Selangor Menggunakan Pendekatan Kalut dan Kaedah Penghampiran Linear Setempat
DOI:
https://doi.org/10.37134/jsml.vol9.sp.2.2021Keywords:
0-1 test, local linear approximation method, prediction, chaotic approach, water levelAbstract
The increase in demand of water resources is in line with the increasing number of residents especially in urban areas.This indicates that there is a need to predict water level so that an adequate water supply can be channelled to the main dam to meet the demands of the residents. Hence, this study is conducted in order to develop a prediction model using chaos approach for the time series data in Sungai Klang that is located in urban areas. Prediction based on chaos approach is divided into two phases which are; detection of chaos behaviour and prediction process. The detection of chaotic behaviour is performed by 0 – 1 test. Meanwhile, the prediction phase is conducted using the local linear approximation method (KPLS). The results show that the water level time series in Sungai Klang is chaotic using 0 – 1 test. Next, the prediction using KPLS shows that the prediction result is good since the predicted time series and the observed time series are almost the same and the value of correlation coefficient obtained is 0.8002. Therefore, the water level in Sungai Klang was successfully predicted using chaotic approach and it is expected to help those responsible authorities in optimizing water resources management in Selangor.
Downloads
References
Adenan, N. H., & Md Noorani, M. S. (2016). Multiple Time-Scales Nonlinear Prediction of River Flow Using Chaos Approach. Jurnal Teknologi, 78(7). https://doi.org/10.11113/jt.v78.3561
Adenan, N. H., & Noorani, M. S. (2015). Peramalan data siri masa aliran sungai di dataran banjir dengan menggunakan pendekatan kalut. Sains Malaysiana, 44(3), 463–471. https://doi.org/10.17576/jsm-2015-4403-19
Azim Mohd Zanuddin, I., Saleh, Y., Mahat Jabatan Geografi, H., Sekitar, A., & Sains Kemanusiaan, F. (2018). Pembinaan Indikator Konstruk Sosioekonomi Bagi Mengukur Kesejahteraan Penduduk Dalam Kawasan Pinggiran Wilayah Metropolitan Lembah Klang-Langat, Malaysia. GEOGRAFI, 6(6), 90–100. https://ejournal.upsi.edu.my/index.php/GEOG/article/view/2091
Berita Harian Online. (2015, April). Hidup terjejas tanpa air. 1–5.
Cao, L. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50. https://doi.org/10.1016/S0167-2789(97)00118-8
Chettih, M., Chorfi, K., & Mouattah, K. (2015). Combining a neural network with deterministic chaos theory using phase space reconstruction for daily rainfall-runoff forecasting. 12th International Symposium on Programming and Systems, ISPS 2015, 181–187. https://doi.org/10.1109/ISPS.2015.7244983
Ghorbani, M. A., Khatibi, R., Danandeh Mehr, A., & Asadi, H. (2018). Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting. Journal of Hydrology, 562, 455–467. https://doi.org/10.1016/j.jhydrol.2018.04.054
Gottwald, G. A., & Melbourne, I. (2009). On the Implementation of the 0–1 Test for Chaos ∗. 8(1), 129–145.
Gottwald, G. A., & Melbourne, I. (2014). A test for a conjecture on the nature of attractors for smooth dynamical systems. Chaos, 24(2). https://doi.org/10.1063/1.4868984
Hamid, N. Z. A. (2015). Pemodelan siri masa kepekatan bahan pencemar udara 03,PM10 dan jerebu menerusi pendekatan kalut. Universiti Kebangsaan Malaysia (UKM).
Hardy, K. (2005). Linear Algebra for Engineers and Scientists using Matlab. Pearson Education, Inc.
Jabatan Pengairan dan Saliran. (2016). Laporan Tahunan JPS 2016.
Jabatan Perancangan Bandar dan Desa Negeri Selangor. (2015). Draf Rancangan Struktur Negeri Selangor 2035.
Kumar, D., Vatsala, K., Pattanashetty, S., & Sandhya, S. (2019). Comparison of Rainfall Forecasting Using Artificial Neural Network and Chaos Theory. Lecture Notes in Electrical Engineering, 545, 413–422. https://doi.org/10.1007/978-981-13-5802-9_38
Mashuri, A., Adenan, H., & Hamid, N. Z. A. (2019). Determining the Chaotic Dynamics of Hydrological Data in Flood-Prone Area. Civil Engineering and Architecture, 7(6A), 71–76. https://doi.org/10.13189/cea.2019.071408
Sapini, M. L., Adam, N. S., Ibrahim, N., Rosmen, N., & Yusof, N. M. (2017). The presence of chaos in rainfall by using 0-1 test and correlation dimension. AIP Conference Proceedings, 1905(1), 050040. https://doi.org/10.1063/1.5012259
Shiri, J., Shamshirband, S., Kisi, O., Karimi, S., Bateni, S. M., Hosseini Nezhad, S. H., & Hashemi, A. (2016). Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach. Water Resources Management, 30(14), 5217–5229. https://doi.org/10.1007/s11269-016-1480-x
Velickov, S. (2004). Nonlinear Dynamics and Chaos. A.A.Balkema Publishers.
Wang, X., & Babovic, V. (2014). Enhancing water level prediction through model residual correction based on Chaos theory and Kriging. International Journal for Numerical Methods in Fluids, 75(1), 42–62. https://doi.org/10.1002/fld.3883
Zaim, W. N. A. W. M., & Hamid, N. Z. A. (2017). Peramalan Bahan Pencemar Ozon (O3 ) di Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia Mengikut Monsun dengan Menggunakan Pendekatan Kalut. Sains Malaysiana, 46(12), 2523–2528. https://doi.org/10.17576/jsm-2017-4612-30