Elastic Properties Measurement of the Multi-layered Materials using the Pulse-Echo Immersion Technique

Authors

  • Sri Maiyena Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
  • Anis Nazihah Mat Daud Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
  • Shahrul Kadri Ayop Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia

DOI:

https://doi.org/10.37134/jsml.vol13.1.3.2025

Keywords:

Elastic properties, pulse echo immersion technique, multi-layered material

Abstract

Elastic properties measurement is a crucial aspect in understanding and estimating the quality of materials. Even though the multi-layered materials are widely used in various industries, there is still a lack of research has been conducted to measure the elastic properties of each layer within multi-layered materials to monitor the quality of each layer. Hence, this research is performed to determine the elastic properties for each layer within multi-layered materials using the pulse echo immersion technique. Five elastic properties are determined in this study: longitudinal modulus, Young's modulus, shear modulus, bulk modulus, and lame constant. The measurement accuracy was validated using four different thicknesses of three-layered poly(methyl methacrylate) (PMMA) samples and a transducer of 10 MHz center frequency. The findings indicate that the measured values of the elastic properties are consistent within 9.91% compared to the reference values. In conclusion, the elastic properties of each layer within multi-layered materials can be determined using the ultrasonic pulse-echo immersion technique.

 

 

Downloads

Download data is not yet available.

Author Biography

Sri Maiyena, Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia

Department of Physics, Faculty of Education and Teacher Training, Mahmud Yunus Batusangkar State Islamic University, Indonesia

References

Afifi, H. A. (2003). Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC. Polymer - Plastics Technology and Engineering, 42(2), 193–205. https://doi.org/10.1081/PPT-120017922

Carlson, J. E., Van Deventer, J., Scolan, A., & Carlander, C. (2003). Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems. Proceedings of the IEEE Ultrasonics Symposium, 1(2), 885–888. https://doi.org/10.1109/ultsym.2003.1293541

Chen, C., Xiang, Y., Tang, L., Li, X., Qin, L., & Cao, W. (2020). Ultrasonic pulse-echo technique for the characterization of elastic constants of single domain Pb(Zn1/3Nb2/3)O3–5.5%PbTiO3 single crystals with 3m symmetry. Journal of Materials Science, 55(27), 12737–12746. https://doi.org/10.1007/s10853-020-04919-6

Cristman, D. R. (1967). Dynamic Properties of Poly (Methylmethacrylate) (PMMA) (Plexiglass) (Report No. AD743547). General Motors Technical Center, Michigan.

Donahue, C. M., Remillieux, M. C., Singh, G., Ulrich, T. J., Migliori, R. J., & Saleh, T. A. (2019). Measuring the elastic tensor of a monolithic SiC hollow cylinder with resonant ultrasound spectroscopy. NDT and E International, 101, 29–33. https://doi.org/10.1016/j.ndteint.2018.09.012

Erol, A., Bilici, V. Ö., & Yönetken, A. (2022). Characterization of the elastic modulus of ceramic-metal composites with physical and mechanical properties by ultrasonic technique. Open Chemistry, 20(1), 593–601. https://doi.org/10.1515/chem-2022-0180

Evans, J. A., Sturtevant, B. T., Clausen, B., Vogel, S. C., Balakirev, F. F., Betts, J. B., Capolungo, L., Lebensohn, R. A., & Maiorov, B. (2021). Determining elastic anisotropy of textured polycrystals using resonant ultrasound spectroscopy. Journal of Materials Science, 56(16), 10053–10073. https://doi.org/10.1007/s10853-021-05827-z

Huang, M., Kirkaldy, N., Zhao, Y., Patel, Y., Cegla, F., & Lan, B. (2022). Quantitative characterisation of the layered structure within lithium-ion batteries using ultrasonic resonance. Journal of Energy Storage, 50, 104585. https://doi.org/10.1016/j.est.2022.104585

Jordan, J. L., Rowland, R. L., Greenhall, J., Moss, E. K., Huber, R. C., Willis, E. C., Hrubiak, R., Kenney-Benson, C., Bartram, B., & Sturtevant, B. T. (2021). Elastic properties of polyethylene from high pressure sound speed measurements. Polymer, 212, 123164. https://doi.org/10.1016/j.polymer.2020.123164

Judawisastra, H., Claudia, Sasmita, F., & Agung, T. P. (2019). Elastic modulus determination of thermoplastic polymers with pulse-echo method ultrasonic testing. IOP Conference Series: Materials Science and Engineering, 547(1), 874–879. https://doi.org/10.1088/1757-899X/547/1/012047

Lane, C. (2014). The development of a 2D ultrasonic array inspection for single crystal turbine blades. Switzerland: Springer International Publishing.

Li, Y., Liu, T., Liu, Y., Liu, H., & Wang, Y. (2019). Measurement of elastic constants using halbacharray enhanced EMAT. 2019 IEEE International Ultrasonics Symposium (IUS), 2631–2634. https://doi.org/10.1109/ULTSYM.2019.8925751

Liu, Z., Zhan, J., Fard, M., & Davy, J. L. (2017). Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Applied Acoustics, 121, 25–32. https://doi.org/10.1016/j.apacoust.2017.01.032

Lochab, J., & Singh, V. R. (2004). Acoustic behaviour of plastics for medical applications. Indian Journal of Pure and Applied Physics, 42(8), 595–599.

Mailyan, L. R., Stel’makh, S. A., Shcherban’, E. M., Khalyushev, A. K., Smolyanichenko, A. S., Sysoev, A. K., ... & Cherpakov, A. V. (2021). Investigation of integral and differential characteristics of variatropic structure heavy concretes by ultrasonic methods. Applied Sciences, 11(8), 3591

Mat Daud, A. N., Jaafar, R., Ayop, S. K., & Rohani, M. S. (2018). A computerized system based on an alternative pulse echo immersion technique for acoustic characterization of non-porous solid tissue mimicking materials. Measurement Science and Technology, 29(4), 045902. https://doi.org/10.1088/1361-6501/aaa728

Messineo, M. G., Rus, G., Eliçabe, G. E., & Frontini, G. L. (2016). Layered material characterization using ultrasonic transmission. An inverse estimation methodology. Ultrasonics, 65, 315–328. https://doi.org/10.1016/j.ultras.2015.09.010

Nazihah, M. D., Kadri, S., Yaacob, M. I. H., & Rosly, J. (2013). Computerized acoustical characterization system of medical phantoms. AIP Conference Proceedings, 1528(1), 406–411. https://doi.org/10.1063/1.4803635

Puchi-Cabrera, E. S., Staia, M. H., & Iost, A. (2015). A description of the composite elastic modulus of multilayer coated systems. Thin Solid Films, 583(1), 177–193. https://doi.org/10.1016/j.tsf.2015.02.078

Raišutis, R., Kažys, R., & Mažeika, L. (2008). Application of the ultrasonic pulse-echo technique for quality control of the multi-layered plastic materials. NDT and E International, 41(4), 300–311. https://doi.org/10.1016/j.ndteint.2007.10.008

Rao, X., Zhang, F., Luo, X., & Ding, F. (2019). Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test. Materials Science and Engineering: A, 744, 426–435. https://doi.org/10.1016/j.msea.2018.12.044

Takahashi, V., & Lematre, M. (2021). Elastic Parameters Characterization of Multilayered Structures by Air-Coupled Ultrasonic Transmission and Genetic Algorithm. Ultrasonics, 119, 1–22.

Umiatin, U., Oktaviana, T., Wijaya, E., Riandini, R., & Yusuf, F. (2021). The bone microstructure identification model based on backscatter mode of ultrasound. Spektra: Jurnal Fisika dan Aplikasinya, 6(1), 61-70. https://doi.org/10.21009/SPEKTRA.061.07

Workman, G. L., Kishoni, D. & Moore, P. O. (2007). Nondestructive Testing Handbook (7th ed.). American Society for Nondestructive Testing.

Wu, S. J., Chin, P. C., & Liu, H. (2019). Measurement of elastic properties of brittle materials by ultrasonic and indentation methods. Applied Sciences, 9(10), 2067. https://doi.org/10.3390/app9102067

Xu, K., Ta, D., He, R., Qin, Y. X., & Wang, W. (2014). Axial transmission method for long bone fracture evaluation by ultrasonic guided waves: simulation, phantom and in vitro experiments. Ultrasound in Medicine & Biology, 40(4), 817–827. https://doi.org/10.1016/j.ultrasmedbio.2013.10.019

Yang, X., Verboven, E., Ju, B. F., & Kersemans, M. (2021). Comparative study of ultrasonic techniques for reconstructing the multilayer structure of composites. NDT & E International, 121, 102460.

Downloads

Published

2025-01-02

How to Cite

Maiyena, S., Mat Daud, A. N., & Ayop, S. K. (2025). Elastic Properties Measurement of the Multi-layered Materials using the Pulse-Echo Immersion Technique. Journal of Science and Mathematics Letters, 13(1), 23–29. https://doi.org/10.37134/jsml.vol13.1.3.2025

Most read articles by the same author(s)

<< < 1 2