X-Ray Shielding Characteristics of Sand Reenforced Plastic Concrete Blocks

Authors

  • Masok Felix Bitrus Department of Physics, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, PMB 2012, Jos, Plateau State, Nigeria
  • Umar Sa’ad Aliyu Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Dawam Robert Rangmou Department of Physics, Faculty of Natural Science, University of Jos, PMB 2084, Jos, Plateau State, Nigeria
  • Amina Muhammad Dunama Muhammadu Buhari TETFund Centre for Excellence, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Oni Samuel Tolulope Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria

Keywords:

X-rays, Plastic Waste, Concretes, Radiation Shielding Efficiency

Abstract

X-Ray shielding efficiency of sand reenforced plastic concrete blocks synthesized using sand and waste sachet water plastic in the percentage ratio of 50:50, 30:70, 10:90 and 0:100 has been studied in this paper. The density of the synthesized concrete blocks and their x-ray shielding characteristics were measured using a densitometer and a set of x-rays shielding fixed diagnostic x-ray machine and digital Geiger counter respectively. The density value decreased as the sand percentage decreased from 1.922 gcm-1 to 1.250 gcm-1 with an increasing plastic percentage, resulting from the substitution of sand with lighter plastic. The linear attenuation coefficient (LAC) and the mass attenuation coefficient (MAC) values increased with an increase in the percentage of plastic while the tenth value layer (TVL) and half value layer (HVL) decreased with increase in the percentage of plastic in the concrete material. The value of the mean free path (MFP) appeared higher when more sand composition. The results demonstrated that more plastic composition improved the concrete shielding efficiency even as the density continued to decrease. This might be since more spaces are closed with more plastic percentage, closing gaps between sand particles. The study demonstrated that the sand reenforced plastic concrete presented in this work offers greater advantage solves the problems of light weight and durability that is faced with conventional cement concrete materials in X-rays shielding applications.

Downloads

References

H. A. Saudi, H. O. Tekin, H. M. H. Zakaly, S. A. M. Issa, G. Susoy, and M. Zhukovsky, “The impact of samarium ( III ) oxide on structural , optical and radiation shielding properties of thallium-borate glasses : Experimental and numerical investigation,” Opt. Mater. (Amst)., vol. 114, no. February, p. 110948, 2021, doi: 10.1016/j.optmat.2021.110948.

S. H. Alazoumi et al., “Structural, elastic, thermo-physical and gamma radiation shielding efficiency of MnO2 doped TeO2-PbO-ZnO glasses,” Opt. Mater. (Amst)., vol. 150, no. January, p. 115277, 2024, doi: 10.1016/j.optmat.2024.115277.

M. G. Dong et al., “Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code,” J. Non. Cryst. Solids, vol. 468, no. April, pp. 12–16, 2017, doi: 10.1016/j.jnoncrysol.2017.04.018.

A. Azuraida et al., “GAMMA RAY SHIELDING PARAMETER OF BARIUM-BORO-TELLURITE GLASS,” Chalcogenide Lett., vol. 17, no. 4, pp. 187–196, 2020.

M. I. Sayyed, H. O. Tekin, E. E. Altunsoy, S. S. Obaid, and M. Almatari, “Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code,” J. Non. Cryst. Solids, vol. 498, no. April, pp. 167–172, 2018, doi: 10.1016/j.jnoncrysol.2018.06.022.

I. G. Geidam et al., “Oxide ion polarizabilities and gamma radiation shielding features of TeO 2 – B 2 O 3 – SiO 2 glasses containing Bi 2 O 3 using Phy-X / PSD software,” Mater. Today Commun., vol. 31, no. April, pp. 1–9, 2022.

P. Kalla, A. Rana, Y. Bahadur, A. Misra, and L. Csetenyi, “Durability studies on concrete containing wollastonite,” J. Clean. Prod., vol. 87, pp. 726–734, 2015, doi: 10.1016/j.jclepro.2014.10.038.

M. G. Dong, R. El-Mallawany, M. I. Sayyed, and H. O. Tekin, “Shielding properties of 80TeO2–5TiO2–(15−x) WO3–xAnOm glasses using WinXCom and MCNP5 code,” Radiat. Phys. Chem., vol. 141, no. May, pp. 172–178, 2017, doi: 10.1016/j.radphyschem.2017.07.006.

R. Kurtulus, T. Kavas, K. A. Mahmoud, and M. I. Sayyed, “A comprehensive examination of zinc-boro-vanadate glass reinforced with Ag2O in physical, optical, mechanical, and radiation shielding aspects,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 2, pp. 1–13, 2021, doi: 10.1007/s00339-021-04282-6.

S. Mukamil et al., “Lead-borate glass system doped with Sm3+ ions for the X-ray shielding applications,” Results Phys., vol. 43, no. November, p. 106121, 2022, doi: 10.1016/j.rinp.2022.106121.

A. B. Azeez, K. S. Mohammed, M. Mustafa, and A. Bakri, “Evaluation of Radiation Shielding Properties for Concrete with Different Aggregate Granule Sizes,” no. May 2014, 2013.

A. M. Onaizi et al., “Radiation-shielding concrete: A review of materials, performance, and the impact of radiation on concrete properties,” J. Build. Eng., vol. 97, no. September, p. 110800, 2024, doi: 10.1016/j.jobe.2024.110800.

A. B. Azeez et al., “The Effect of Various Waste Materials’ Contents on the Attenuation Level of Anti-Radiation Shielding Concrete,” no. October, 2013, doi: 10.3390/ma6104836.

A. B. Azeez, K. S. Mohammed, A. M. M. Al Bakri, H. I. Hasan, and O. A. Abdulkareem, “Radiation shielding characteristics of concretes incorporates different particle sizes of various waste materials,” no. April 2014, 2013, doi: 10.4028/www.scientific.net/AMR.925.190.

A. B. Azeez et al., “The Effect of Various Waste Materials’ Contents on the Attenuation Level of Anti-Radiation Shielding Concrete,” no. July, 2013, doi: 10.3390/ma6104836.

H. E. J.Koskinen and E. K. J.Kilpua, “Radiation Belts and Their Environment,” in Physics ofEarth’s Radiation Belts, 2022, pp. 1–25.

A. S. Aliyu et al., “Optoelectronic and Gamma Ray Attenuation Properties of Ore-based Bi and Sn-doped Borosilicate Glasses,” Ceram. Int., vol. 50, no. 15, pp. 26424–26434, 2024, doi: 10.1016/j.ceramint.2024.04.369.

J. Kaewkhao, M. Djamal, and T. Korkut, “Interaction of radiation with matter and related topics,” Science and Technology of Nuclear Installations, vol. 2014. Hindawi Publishing Corporation, 2014. doi: 10.1155/2014/207484.

A. Alessio et al., “Produced with the kind Support of Radiation Protection and Dose Optimisation A Technologist’s Guide.”

R. El-Mallawany and M. I. Sayyed, “Comparative shielding properties of some tellurite glasses: Part 1,” Phys. B Condens. Matter, vol. 539, no. April 2017, pp. 133–140, 2018, doi: 10.1016/j.physb.2017.05.021.

S. Kaewjaeng, S. Kothan, N. Chanthima, H. J. Kim, and J. Kaewkhao, “Gamma radiation shielding materials of lanthanum calcium silicoborate glasses,” in Materials Today: Proceedings, Elsevier Ltd, 2018, pp. 14901–14906. doi: 10.1016/j.matpr.2018.04.027.

S. Kaewjaeng, K. Boonyu, H. J. Kim, J. Kaewkhao, and S. Kothan, “Study on radiation shielding properties of glass samples doped with holmium,” AIP Conf. Proc., vol. 2279, no. 1, p. 60005, 2020.

S. Sarachai, N. Chanthima, N. W. Sangwaranatee, and S. Kothan, “Radiation Shielding Properties of BaO-ZnO-B 2 O 3 Glass for X-Ray Room,” vol. 766, pp. 88–93, 2018, doi: 10.4028/www.scientific.net/KEM.766.88.

A. S. Aliyu et al., “Bismuthite and cassiterite-doped borosilicate glass systems for X-rays attenuation : Fabrication and characterisation,” Opt. Mater. (Amst)., vol. 151, no. April, p. 115365, 2024, doi: 10.1016/j.optmat.2024.115365.

S. Thakur et al., “Thermo- and photoluminescent properties and gamma radiation shielding efficiency of NiO doped B2O3–Bi2O3 glass system,” Radiat. Phys. Chem., no. xxxx, 2023.

Y. A. Abdelghany, M. M. Kassab, M. M. Radwan, and A. Abdel-Latif M, “Investigation of optical, mechanical, and shielding properties of zirconia glass capsule,” Prog. Nucl. Energy, vol. 154, Dec. 2022, doi: 10.1016/j.pnucene.2022.104457.

U. Perişanoğlu, F. I. El-Agawany, E. Kavaz, M. Al-Buriahi, and Y. S. Rammah, “Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes,” Ceram. Int., vol. 46, no. 3, 2020, doi: 10.1016/j.ceramint.2019.10.023.

E. M. A. H. A. M. Madbouly, “Chemical and radiation shielding effectiveness of some heavy metal oxide glasses for immobilizing radioactive wastes,” J. Aust. Ceram. Soc., no. 0123456789, 2023, doi: 10.1007/s41779-023-00951-2.

Z. . Dong, M., Xue, X., Yang, H., Liu, D., Wang, C., Li, “A novel comprehensive utilization of vanadium slag: as gamma ray shielding material.,” J. Hazard. Mater., vol. 318, pp. 751–757, 2016.

M. I. Sayyed, M. G. Dong, H. O. Tekin, G. Lakshminarayana, and M. A. Mahdi, “Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code,” Mater. Chem. Phys., vol. 215, 2018, doi: 10.1016/j.matchemphys.2018.04.106.

B. V. Kheswa, “X-ray shielding properties of bismuth-borate glass doped with rare earth ions,” 2023.

M. A. M. Uosif et al., “Lead-Free Ternary Glass for Radiation Protection : Composition and Performance Evaluation for Solar Cell Coverage,” 2023.

M. S. Alqahtani et al., “Structural and performance radiation protection the phosphate glasses contain: Te, K, Al, Nb-doped with rare earth,” Chalcogenide Lett., vol. 20, no. 1, pp. 43–54, 2023, doi: 10.15251/CL.2023.201.43.

D. A. Aloraini et al., “Preparation, radiation shielding and mechanical characterization of PbO–TeO2–MgO–Na2O–B2O3 glasses,” Radiat. Phys. Chem., vol. 198, p. 110254, Sep. 2022, doi: 10.1016/J.RADPHYSCHEM.2022.110254.

A. H. Almuqrin, M. Elsafi, S. Yasmin, and M. I. Sayyed, “Morphological and Gamma-Ray Attenuation Properties of High-Density Polyethylene Containing Bismuth Oxide,” Materials (Basel)., vol. 15, no. 18, pp. 1–11, 2022, doi: 10.3390/ma15186410.

Downloads

Published

2025-02-04

How to Cite

Felix Bitrus, M., Sa’ad Aliyu, U., Robert Rangmou, D., Muhammad Dunama, A., & Samuel Tolulope, O. (2025). X-Ray Shielding Characteristics of Sand Reenforced Plastic Concrete Blocks. EDUCATUM Journal of Science, Mathematics and Technology, 12(1), 148-162. https://ejournal.upsi.edu.my/index.php/EJSMT/article/view/11049

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.