Evolution of Functional Membranes: A Bibliometric Approach on the Modification from Polymeric to Nanocomposite Systems

Authors

  • Febriani Nanotechnology Research Center, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia https://orcid.org/0000-0002-3929-5059
  • Suriani Abu Bakar Nanotechnology Research Center, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia https://orcid.org/0000-0002-6541-7291
  • Wipsar Sunu Brams Dwandaru Research Center for Sustainable, Nanomaterial, Universitas Negeri Yogyakarta, Colombo St., Karangmalang, Yogyakarta, 55281, Indonesia https://orcid.org/0000-0002-9692-4640
  • Muqoyyanah Research Center for Nanotechnology System, National Research and Innovation Agency (BRIN), 15314 South Tangerang, Banten, Indonesia https://orcid.org/0000-0002-3721-0314
  • Ghani Ur Rehman Nanotechnology Research Center, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia https://orcid.org/0000-0002-8322-2893
  • Rosiah Rohani Department of Chemical & Process Engineering Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia https://orcid.org/0000-0002-4391-4043
  • Mohd Hafiz Dzarfan Othman Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE), Universiti Technology Malaysia, 81310 UTM, Skudai, Johor, Malaysia https://orcid.org/0000-0002-5842-2447
  • Rika Noor Safitri Nanotechnology Research Center, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia https://orcid.org/0009-0007-5176-9441
  • Fatiatun Nanotechnology Research Center, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia https://orcid.org/0000-0002-7666-5274
  • Hafizul Fahri Hanafi Nanotechnology Research Center, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia https://orcid.org/0000-0002-3205-0956

DOI:

https://doi.org/10.37134/

Keywords:

bibliometric approach, functional membrane filtration, polymeric membrane, nanocomposite membrane, sustainable water treatment

Abstract

Membrane science has become a study that has received significant attention for its use in membrane filtration. The development of membrane science has accelerated with the use of nanotechnology. Various studies on the use of membranes in water treatment filtration have been conducted, but many focus on single materials and separation effectiveness. However, research presenting developments in membrane technology that focus on the shift from the polymeric era to nanocomposites has not been presented. This gap led this study to map the evolution of membrane science as a direction for future research. A total of 13,983 documents obtained from Scopus were analyzed. Open Refine and Microsoft Excel were used for metadata cleaning, while VOSviewer and IIPmaps were used for data visualization. The analysis was conducted to obtain data on the development and distribution of publications, trending keywords, research transitions, and future research directions. The results show that publications increased rapidly in 2010 that line with the increasing use of nanotechnology. Publication and collaboration trends are dominated by China, the United States, and Malaysia. Research transitions also showed three main phases, namely: polymeric foundations (1990-2005), nanocomposite integration (2006-2015), and advanced functionalities (2016-2025). The advanced functionalities phase showed the use of eco-friendly materials and artificial intelligence in the design of multifunctional membranes. This bibliometric study indicates that water treatment membranes have shifted from improving physical properties to using nanomaterials for functional purposes. Consequently, upcoming work ought to prioritize novel combinations of nanomaterials alongside advancements in produced smart filtration systems.

Downloads

Download data is not yet available.

References

[1] Vishwakarma, V., Kandasamy, J. and Vigneswaran, S. (2023) Surface Treatment of Polymer Membranes for Effective Biofouling Control. Membranes (Basel). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/membranes13080736.

[2] Dumbrava, O., Filimon, A. and Marin, L. (2023) Tailoring properties and applications of polysulfone membranes by chemical modification: Structure-properties-applications relationship. European Polymer Journal, 196, 112316. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2023.112316.

[3] Tang, Y., Lin, Y., Ma, W. and Wang, X. (2021) A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application. Journal of Membrane Science, 639, 119759. https://doi.org/https://doi.org/10.1016/j.memsci.2021.119759.

[4] Dmitrieva, E.S., Anokhina, T.S., Novitsky, E.G., Volkov, V. V., Volkov, A. V. and Borisov, I.L. (2022) Polymeric Membranes for Oil-Water Separation: A Review. Polymers (Basel). MDPI. https://doi.org/10.3390/polym14050980.

[5] Dallaev, R., Pisarenko, T., Sobola, D., Orudzhev, F., Ramazanov, S. and Trčka, T. (2022) Brief Review of PVDF Properties and Applications Potential. Polymers, 14. https://doi.org/10.3390/polym14224793.

[6] Yang, Y., Huang, E., Dansawad, P., Li, Y., Qing, Y., Lv, C. et al. (2023) Superhydrophilic and underwater superoleophobic PVDF-PES nanofibrous membranes for highly efficient surfactant-stabilized oil-in-water emulsions separation. Journal of Membrane Science, 687, 122044.

[7] Sutrisna, P.D., Kurnia, K.A., Siagian, U.W.R., Ismadji, S. and Wenten, I.G. (2022) Membrane fouling and fouling mitigation in oil–water separation: A review. Journal of Environmental Chemical Engineering, Elsevier. 10, 107532. https://doi.org/10.1016/J.JECE.2022.107532.

[8] Scholes, C.A. (2020) Pilot plants of membrane technology in industry: Challenges and key learnings. Front Chem Sci Eng. Higher Education Press. p. 305–16. https://doi.org/10.1007/s11705-019-1860-x.

[9] Mohamat, R., Bakar, S.A., Mohamed, A., Muqoyyanah, M., Othman, M.H.D., Mamat, M.H. et al. (2023) Incorporation of graphene oxide/titanium dioxide with different polymer materials and its effects on methylene blue dye rejection and antifouling ability. Environmental Science and Pollution Research, 30, 72446 – 72462. https://doi.org/10.1007/s11356-023-27207-7.

[10] Wang, Y., Liu, Z., Wei, X., Liu, K., Wang, J., Hu, J. et al. (2021) An integrated strategy for achieving oil-in-water separation, removal, and anti-oil/dye/bacteria-fouling. Chemical Engineering Journal, 413, 127493. https://doi.org/https://doi.org/10.1016/j.cej.2020.127493.

[11] Zhang, Q., Lu, X., Zhao, L., Liu, J. and Wu, C. (2016) Research on polyvinylidene fluoride (PVDF) hollow-fiber hemodialyzer. 61, 309–16. https://doi.org/doi:10.1515/bmt-2014-0190.

[12] Zhu, T., Xie, Y.H., Jiang, J., Wang, Y.T., Zhang, H.J. and Nozaki, T. (2009) Comparative study of polyvinylidene fluoride and PES flat membranes in submerged MBRs to treat domestic wastewater. Water Science and Technology, 59, 399–405. https://doi.org/10.2166/wst.2009.849.

[13] Zou, D., Jeon, S.M., Kim, H.W., Bae, J.Y. and Lee, Y.M. (2021) In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. Journal of Membrane Science, 637, 119632. https://doi.org/https://doi.org/10.1016/j.memsci.2021.119632.

[14] Giacomello, A., Meloni, S., Chinappi, M. and Casciola, C.M. (2012) Cassie–Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir, 28, 10764–72.

[15] Lejeune, M., Lacroix, L.M., Brétagnol, F., Valsesia, A., Colpo, P. and Rossi, F. (2006) Plasma-based processes for surface wettability modification. Langmuir, 22, 3057–61.

[16] AlSawaftah, N., Abuwatfa, W., Darwish, N. and Husseini, G. (2021) A comprehensive review on membrane fouling: Mathematical modelling, prediction, diagnosis, and mitigation. Water, 13, 1327.

[17] Liu, Y., Luo, Q., Chen, M., Liu, Y., Zhao, N. and Mei, J. (2024) Strategies for improving the fouling resistance and stability of super-wettable metal mesh membranes: A review. Separation and Purification Technology, 127986.

[18] Arundhathi, B., Pabba, M., Raj, S.S., Sahu, N. and Sridhar, S. (2024) Advancements in Mixed-Matrix Membranes for Various Separation Applications: State of the Art and Future Prospects. Membranes (Basel). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/membranes14110224.

[19] Ursino, C. and Figoli, A. (2022) Chapter 14 - Nanomaterials in polymeric membranes for water treatment applications. In: Ahuja S, editor. Separation Science and Technology, Academic Press. p. 255–80. https://doi.org/https://doi.org/10.1016/B978-0-323-90763-7.00016-0.

[20] Liu, Y., Zhang, F., Zhu, W., Su, D., Sang, Z., Yan, X. et al. (2020) A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon, Elsevier Ltd. 160, 88–97. https://doi.org/10.1016/j.carbon.2020.01.002.

[21] Rehman, G.U., Othman, M.H.D., Wahab, R.A., Ismail, A.F., Goh, P.S., Khan, I. et al. (2024) Enhancing photocatalytic performance: Studying the synthesis and characterization of AgI-tuned TiO2/ZnO hybrid ternary nanocomposites. Journal of Physics and Chemistry of Solids, 192, 112104.

[22] Urfi, M., Babar, Z. Bin and Rizwan, K. (2024) Carbon-based nanomaterials (graphene and graphene oxide, carbon nanotubes, and carbon nanofibers) for oil-water separation. Nanotechnology for Oil-Water Separation, Elsevier. p. 131–51.

[23] Modi, A. and Bellare, J. (2019) Efficiently improved oil/water separation using high flux and superior antifouling polysulfone hollow fiber membranes modified with functionalized carbon nanotubes/graphene oxide nanohybrid. Journal of Environmental Chemical Engineering, Elsevier Ltd. 7. https://doi.org/10.1016/j.jece.2019.102944.

[24] Xu, Y., Yu, Y., Song, C., Zhu, Y., Song, C., Fan, X. et al. (2022) One-step preparation of efficient SiO2/PVDF membrane by sol-gel strategy for oil/water separation under harsh environments. Polymer, 260, 125402. https://doi.org/https://doi.org/10.1016/j.polymer.2022.125402.

[25] Wang, D., Huang, L., Sun, H., Li, S., Wang, G., Zhao, R. et al. (2024) Enhanced photogenic self-cleaning of superhydrophilic Al2O3@ GO-TiO2 ceramic membranes for efficient separation of oil-in-water emulsions. Chemical Engineering Journal, 486, 150211.

[26] Wang, J., Xing, J., Li, G., Yao, Z., Ni, Z., Wang, J. et al. (2023) How to extend the lifetime of RO membrane? From the perspective of the end-of-life RO membrane autopsy. Desalination, 561, 116702. https://doi.org/https://doi.org/10.1016/j.desal.2023.116702.

[27] Arundhathi, B., Pabba, M., Raj, S.S., Sahu, N. and Sridhar, S. (2024) Advancements in Mixed-Matrix Membranes for Various Separation Applications: State of the Art and Future Prospects. Membranes, 14, 224.

[28] Alenazi, N.A., Hussein, M.A., Alamry, K.A. and Asiri, A.M. (2017) Modified polyether-sulfone membrane: A mini review. Des Monomers Polym. Taylor and Francis Ltd. p. 532–46. https://doi.org/10.1080/15685551.2017.1398208.

[29] Gkika, D.A., Karmali, V., Lambropoulou, D.A., Mitropoulos, A.C. and Kyzas, G.Z. (2023) Membranes Coated with Graphene-Based Materials: A Review. Membranes (Basel). MDPI. https://doi.org/10.3390/membranes13020127.

[30] Ng, L.Y., Mohammad, A.W., Leo, C.P. and Hilal, N. (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination. p. 15–33. https://doi.org/10.1016/j.desal.2010.11.033.

[31] Junaidi, N.F.D., Othman, N.H., Fuzil, N.S., Mat Shayuti, M.S., Alias, N.H., Shahruddin, M.Z. et al. (2021) Recent development of graphene oxide-based membranes for oil–water separation: A review. Sep Purif Technol. Elsevier B.V. https://doi.org/10.1016/j.seppur.2020.118000.

[32] Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. and Lim, W.M. (2021) How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, Elsevier Inc. 133, 285–96. https://doi.org/10.1016/j.jbusres.2021.04.070.

[33] Mulder, M. (1996) Basic Principles of Membrane Technology [Internet]. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-009-1766-8.

[34] Pendergast, M.M. and Hoek, E.M. V. (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci, The Royal Society of Chemistry. 4, 1946–71. https://doi.org/10.1039/C0EE00541J.

[35] Fane, A.G., Wang, R. and Jia, Y. (2011) Membrane Technology: Past, Present and Future. Membrane and Desalination Technologies, Humana Press. p. 1–45. https://doi.org/10.1007/978-1-59745-278-6_1.

[36] Zou, L., Xu, L., Jiang, Z., Liao, J., Gao, P., Yang, G. et al. (2024) A bibliometric study on the research trends and hotspots of proton exchange membrane electrolyzer. International Journal of Electrochemical Science, 19, 100482. https://doi.org/https://doi.org/10.1016/j.ijoes.2024.100482.

[37] Adewole, J.K., Yeneneh, A.M., Oladipo, H.B. and Al Kharusi, A.S.K. (2024) A Mini Review on the Opportunities for Membrane Pervaporation Technology for Energy-efficient Removal of Dispersed Oil and Dissolved Hydrocarbons from Produced Water. Recent Innovations in Chemical Engineering, 17, 281–95.

[38] Baker R. W. (2024) Membrane Technology and Applications. John Wiley & Sons Ltd.

[39] AlSawaftah, N., Abuwatfa, W., Darwish, N. and Husseini, G.A. (2022) A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation. Membranes (Basel). MDPI. https://doi.org/10.3390/membranes12121271.

[40] Banti, D.C., Mitrakas, M. and Samaras, P. (2021) Membrane fouling controlled by adjustment of biological treatment parameters in step-aerating MBR. Membranes, MDPI AG. 11. https://doi.org/10.3390/membranes11080553.

[41] Lu, X., Shen, L., Chen, C., Yu, W., Wang, B., Kong, N. et al. (2024) Advance of Self-Cleaning Separation Membranes for Oil-Containing Wastewater Treatment. Environmental Functional Materials,.

[42] Raji, Y.O., Othman, M.H.D., Raji, M.A., Mamah, S.C., Ismail, N.J. and Ismail, A.F. (2024) Revolutionizing Wastewater Treatment: Unveiling the efficacy of self-cleaning dual-layer membrane systems. Journal of Environmental Chemical Engineering, 114092.

[43] Ahmad, N.A., Leo, C.P., Ahmad, A.L. and Ramli, W.K.W. (2015) Membranes with great hydrophobicity: a review on preparation and characterization. Separation & Purification Reviews, 44, 109–34.

[44] Junaidi, N.F.D., Othman, N.H., Fuzil, N.S., Mat Shayuti, M.S., Alias, N.H., Shahruddin, M.Z. et al. (2021) Recent development of graphene oxide-based membranes for oil–water separation: A review. Sep Purif Technol. Elsevier B.V. https://doi.org/10.1016/j.seppur.2020.118000.

[45] ElShorafa, R., Liu, Z. and Ahzi, S. (2023) Durable Nanofiber-Based Membrane with Efficient and Consistent Performance for Oil/Saltwater Separation. Applied Sciences, 13, 6792.

[46] Salman Muhammad and Shakir, M. and Y.M. (2022) Recent Developments in Membrane Filtration for Wastewater Treatment. In: Karchiyappan Thirugnanasambandham and Karri RR and DMH, editor. Industrial Wastewater Treatment : Emerging Technologies for Sustainability, Springer International Publishing, Cham. p. 1–25. https://doi.org/10.1007/978-3-030-98202-7_1.

[47] Sahu, A., Dosi, R., Kwiatkowski, C., Schmal, S. and Poler, J.C. (2023) Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel). MDPI. https://doi.org/10.3390/polym15030540.

[48] Reddy, A.V.R., Trivedi, J.J., Devmurari, C. V, Mohan, D.J., Singh, P., Rao, A.P. et al. (2005) Fouling resistant membranes in desalination and water recovery. Desalination, 183, 301–6. https://doi.org/https://doi.org/10.1016/j.desal.2005.04.027.

[49] Lisitsin, D., Hasson, D. and Semiat, R. (2005) Critical flux detection in a silica scaling RO system. Desalination, 186, 311–8. https://doi.org/https://doi.org/10.1016/j.desal.2005.06.007.

[50] Mondal, S. and Wickramasinghe, S.R. (2012) Photo-induced graft polymerization of N-isopropyl acrylamide on thin film composite membrane: Produced water treatment and antifouling properties. Separation and Purification Technology, 90, 231–8. https://doi.org/https://doi.org/10.1016/j.seppur.2012.02.024.

[51] Yuan, S., Wang, J., Wang, X., Long, S., Zhang, G. and Yang, J. (2015) Poly(arylene sulfide sulfone) hybrid ultrafiltration membrane with TiO2-g-PAA nanoparticles: Preparation and antifouling performance. Polymer Engineering & Science, 55, 2829–37. https://doi.org/https://doi.org/10.1002/pen.24174.

[52] Zhou, Z. and Wu, X.F. (2015) Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation. Materials Letters, Elsevier. 160, 423–7. https://doi.org/10.1016/j.matlet.2015.08.003.

[53] Park, H., Han, D.W. and Kim, J.W. (2015) Highly Stable Phase Change Material Emulsions Fabricated by Interfacial Assembly of Amphiphilic Block Copolymers during Phase Inversion. Langmuir, American Chemical Society. 31, 2649–54. https://doi.org/10.1021/la504424u.

[54] Mousa, S.A., Abdallah, H., Ibrahim, S.S. and Khairy, S.A. (2023) Enhanced photocatalytic properties of graphene oxide/polyvinylchloride membranes by incorporation with green prepared SnO2 and TiO2 nanocomposite for water treatment. Applied Physics A: Materials Science and Processing, Springer Science and Business Media Deutschland GmbH. 129. https://doi.org/10.1007/s00339-023-07117-8.

[55] Yun, J., Khan, F.A. and Baik, S. (2017) Janus Graphene Oxide Sponges for High-Purity Fast Separation of Both Water-in-Oil and Oil-in-Water Emulsions. ACS Applied Materials & Interfaces, American Chemical Society. 9, 16694–703. https://doi.org/10.1021/acsami.7b03322.

[56] Wang, L., Tian, C., Dai, R. and Wang, Z. (2024) Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 35, 109356. https://doi.org/https://doi.org/10.1016/j.cclet.2023.109356.

[57] Pei, S., Wei, Q., Huang, K., Cheng, H.M. and Ren, W. (2018) Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, Nature Publishing Group. 9. https://doi.org/10.1038/s41467-017-02479-z

[58] Rodríguez-Rojas, M. del P., Bustos-Terrones, V., Díaz-Cárdenas, M.Y., Vázquez-Vélez, E. and Martínez, H. (2024) Life Cycle Assessment of Green Synthesis of TiO2 Nanoparticles vs. Chemical Synthesis. Sustainability (Switzerland), Multidisciplinary Digital Publishing Institute (MDPI). 16. https://doi.org/10.3390/su16177751

[59] Anwar, F.A., Rahmah, W. and Kadja, G.T.M. (2025) Recent advances in two-dimensional MXene membranes for emerging nanofiltration applications: A review. Nano Trends, 12, 100154. https://doi.org/10.1016/j.nwnano.2025.100154

[60] Le, T., Jamshidi, E., Beidaghi, M. and Esfahani, M.R. (2022) Functionalized-MXene Thin-Film Nanocomposite Hollow Fiber Membranes for Enhanced PFAS Removal from Water. ACS Applied Materials and Interfaces, American Chemical Society. 14, 25397–408. https://doi.org/10.1021/acsami.2c03796

[61] Rajendran, D.S., Devi, E.G., Subikshaa, V.S., Sethi, P., Patil, A., Chakraborty, A. et al. (2024) Recent advances in various cleaning strategies to control membrane fouling: a comprehensive review. Clean Technol Environ Policy. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10098-024-03000-z

[62] Kusworo, T.D., Budiyono, Kumoro, A.C. and Utomo, D.P. (2022) Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review. Journal of Environmental Management, 317, 115357. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115357

[63] Attari, N. and Hausler, R. (2023) Cradle-to-Gate Life Cycle Assessment of Cellulose-Based Membrane Manufacturing Process. Avestia Publishing International Journal of Environmental Pollution and Remediation, 1929–2732. https://doi.org/10.11159/ijepr23.003

[64] Tu, W., Luo, Y., Shen, J., Ran, X., Yu, Z., Wang, C. et al. (2025) Lotus Leaf-Inspired Corrosion-Resistant and Robust Superhydrophobic Coating for Oil–Water Separation. Biomimetics, 10. https://doi.org/10.3390/biomimetics10050262

[65] Jamilon, S.N.A., Suriani, A.B., Azmi, M., Muqoyyanah, M., Rosmanisah, M. and Htwe, Y.Z.N. (2024) Incorporation of Graphene Oxide/Metal Oxide into Modified Polyvinylidene Fluoride Membrane for the Degradation of Methylene Blue Dye through Adsorption-Photocatalytic Activity. EDUCATUM Journal of Science, Mathematics and Technology, 11, 88–100. https://doi.org/10.37134/ejsmt.vol11.1.9.2024

[66] Baig, N., Abdulazeez, I. and Aljundi, I.H. (2023) Low-pressure-driven special wettable graphene oxide-based membrane for efficient separation of water-in-oil emulsions. Npj Clean Water, Nature Research. 6. https://doi.org/10.1038/s41545-023-00252-y

[67] Vijayshanthy, S., Priyanka, E.B., Thangavel, S., Anand, R., Bhavana, G.B., Khan, B. et al. (2025) Performance of polyvinyl alcohol graphene oxide membrane for microplastic removal in wastewater with an IoT based monitoring approach. Scientific Reports, 15, 20774. https://doi.org/10.1038/s41598-025-06072-z

[68] Ghamari, S. and Tourani, S. (2025) Development of polysulfone-based nanocomposite membranes reinforced with magnetic graphene oxide for efficient mercury and oil removal from wastewater. Materials Science and Engineering: B, 317, 118190. https://doi.org/https://doi.org/10.1016/j.mseb.2025.118190.

[69] Bertagna Silva, D. and Marques, A.C. (2025) TiO₂-based photocatalytic degradation of microplastics in water: Current status, challenges and future perspectives. Journal of Water Process Engineering. Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2025.107465.

[70] Manna, M., Dutta, B.K. and Sen, S. (2023) A hybrid ZA@ZnO1−X nanocomposite-based tubular membrane process for enhanced degradation of organics: A bench scale study for Bismarck brown R effluent. Journal of Environmental Chemical Engineering, 11, 110321. https://doi.org/https://doi.org/10.1016/j.jece.2023.110321.

[71] Rabiee, N., Sharma, R., Foorginezhad, S., Jouyandeh, M., Asadnia, M., Rabiee, M. et al. (2023) Green and Sustainable Membranes: A review. Environ Res. Academic Press Inc. https://doi.org/10.1016/j.envres.2023.116133.

[72] Voon, B.K., Yap, Y.J. and Yong, W.F. (2025) Green solvents in membrane separation: progress, challenges, and future perspectives for sustainable industrial applications. Green Chemistry, The Royal Society of Chemistry. 27, 11705–38. https://doi.org/10.1039/D5GC03161C.

[73] Md Disa, N., Abu Bakar, S., Alfarisa, S., Mohamed, A., Md Isa, I., Kamari, A. et al. (2015) The Synthesis of Graphene Oxide via Electrochemical Exfoliation Method. Advanced Materials Research, Trans Tech Publications, Ltd. 1109, 55–9. https://doi.org/10.4028/www.scientific.net/amr.1109.55.

Downloads

Published

2025-12-16

How to Cite

Febriani, Abu Bakar, S., Dwandaru, W. S. B., Muqoyyanah, Rehman, G. U., Rohani, R., Othman, M. H. D., Safitri, R. N., Fatiatun, & Hanafi, H. F. (2025). Evolution of Functional Membranes: A Bibliometric Approach on the Modification from Polymeric to Nanocomposite Systems. EDUCATUM Journal of Science, Mathematics and Technology, 12(2), 53-70. https://doi.org/10.37134/

Most read articles by the same author(s)