Visualization of Intuitionistic Fuzzy B-Spline Space Curve and Its Properties

Authors

  • Mohammad Izat Emir Zulkifly School of Informatics and Applied Mathematics, University Malaysia Terengganu
  • Abdul Fatah Wahab School of Informatics and Applied Mathematics, University Malaysia Terengganu

DOI:

https://doi.org/10.37134/ejsmt.vol6.1.6.2019

Keywords:

Intuitionistic fuzzy B-spline, intuitionistic fuzzy control point, intuitionistic fuzzy set, space curve, control point relation

Abstract

In this paper, an intuitionistic fuzzy B-spline space curve is defined and some of its properties is introduced. Firstly, intuitionistic fuzzy control point is defined based on intuitionistic fuzzy and geometrical modeling concepts. Each of the control point relation that consists of three function is find and shown. Later, the control point is blended with B-spline basis function and intuitionistic fuzzy B-spline curve is visualized. Some of the control point and space curve properties in the Euclidean space is also discussed throughout this paper.

Downloads

Download data is not yet available.

References

J. Hoschek, and D. Lasser, Fundamentals of Computer Aided Geometric Design (A. K. Peters, CRC Press, Wellesley, MA, 1993).

L. A. Zadeh, Information and Control, 8(3), 338, (1965).

K. T. Atanassov, “Intuitionistic Fuzzy Sets”, VII ITKR’s Session, Sofia, Bulgarian, 1983.

K. T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications (Physica-Verlag HD, New York, 1999).

K. T. Atanassov and G. Gargov, Fuzzy Sets and Systems, 3, 343, (1989).

M. Hassaballah and A. Ghareeb, Applied Soft Computing, 57, 48, (2017).

T. Ciftcibasi and D. Altunay, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 28(5), 662, (1998).

M. I. E. Zulkifly and A. F. Wahab, Malaysia Journal of Fundamental and Applied Sciences, 11(1), 21, (2015).

A. F. Wahab, M. I. E. Zulkifly. and M. S. Husain, AIP Conference Proceedings, 1750(1), 030047-1, (2016).

M. I. E. Zulkifly, and A. F. Wahab, AIP Conference Proceedings, 1974(1), 020064, (2018).

A. F. Wahab, and M. I. E. Zulkifly, AIP Conference Proceedings, 1974(1), 020031, (2018).

A. F. Wahab, and M. I. E. Zulkifly., Far East Journal of Mathematical Sciences (FJMS). 106(1), 217, (2018).

M. I. E. Zulkifly, Ph.D. dissertation, Universiti Malaysia Terengganu, Terengganu, 2018.

A. Davies and Philip Samuels, An Introduction to computational Geometry for Curves and Surfaces (Clarendon Press, Oxford, 1996).

M. I. E. Zulkifly, and A. F. Wahab, B-spline Curve Interpolation Model by Using Intuitionistic Fuzzy Approach, IAENG International Journal of Applied Mathematics (IJAM). Accepted for publication.

Downloads

Published

2019-06-28

How to Cite

Zulkifly, M. I. E., & Wahab, A. F. (2019). Visualization of Intuitionistic Fuzzy B-Spline Space Curve and Its Properties. EDUCATUM Journal of Science, Mathematics and Technology, 6(1), 41–46. https://doi.org/10.37134/ejsmt.vol6.1.6.2019