Bézier Curve Interpolation Model for Complex Data by Using Neutrosophic Approach

Authors

  • Siti Nuri Idara Rosli Department of Mathematical Sciences, Faculty of Science, University of Technology Malaysia (UTMi), 81310, Johor Bahru, Malaysia
  • Mohammad Izat Emiri Zulkifly Department of Mathematical Sciences, Faculty of Science, University of Technology Malaysia (UTMi), 81310, Johor Bahru, Malaysia

DOI:

https://doi.org/10.37134/ejsmt.vol12.1.1.2025

Keywords:

Neutrosophic Set, Interpolation Approach, Bézier Curve, Neutrosophic Control Points, Complex Data

Abstract

Since certain data are ignored owing to noise, coping with the complex data with neutrosophic features is problematic. This paper suggests a neutrosophic set strategy for interpolating the Bézier curve to overcome this issue. Thus, depending on the neutrosophic set notion, this work introduces the Bézier curve interpolation method for neutrosophic data. Using the neutrosophic set and its attributes, the neutrosophic control point is specified first. After that, the Bernstein basis function is linked to the control point and yields a neutrosophic Bézier. This curve is then shown using an interpolation approach that includes curves indicating membership, indeterminacy, and non-membership. Before the conclusion of this article, there is a numeric example and an algorithm for developing the neutrosophic Bézier curve using interpolation. Based on the results obtained, the neutrosophic set can deal with the complex data by treating all data including the uncertainty data as indeterminacy membership functions. In conclusion, this model can be used for real applications involving big data analysis.

Downloads

Download data is not yet available.

References

Zadeh, L. A. (1965). Fuzzy Set. Information and Control. 8, 338-353.

Atanassov, K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR’s Session, Sofia, Bulgarian,

Anile, A.M & Falcidieno, Bianca & Gallo, Giovanni & Spagnuolo, Michela & Spinello, Salvatore. (2000). Modeling uncertain data with fuzzy B-splines. Fuzzy Sets and Systems. 113. 397-410. 10.1016/S0165-0114(98)00146-8.

Kaleva, O. (1994). Interpolation of fuzzy data. Fuzzy Sets and Systems, 61(1), 63-70.

Wahab, A. F., Zakaria, R. and Ali, J. M. (2010). Fuzzy Interpolation Rational Bezier Curve in Imaging and Visualization, 7th International Conference on Computer Graphics, Sydney, NSW, 63-67.

Wahab, A. F. and Zakaria, R. (2012). Fuzzy interpolation rational cubic Bezier curves modelling of blurring offline handwriting signature with different degree of blurring, Applied Mathematical Sciences, 6(81), 4005-4016.

Zakaria, R. and Wahab, A.F. (2013). Bezier curve modelling for intuitionistic fuzzy data problem, Applied Mathematical Sciences, 7(45), 2229-2238.

Abbas, S., Hussain M. Z. and Irshad, M. (2017). Image Interpolation by Rational Ball Cubic B-spline Representation and Genetic Algorithm, Alexandria Engineering Journal.

Bica, A. M. and Popescu, C. (2017). Note on Fuzzy Monotonic Interpolating Splines of Odd Degree. Fuzzy Sets and Systems, 310, 60-73.

Cheng, K.H. (2016). Adaptive B-spline-based Fuzzy Sliding-mode Control for an Auto-warehousing Crane System. Applied Soft Computing, 48, 476-490.

Gaeta, M., Loia, V. and Tomasiello, S. (2016). Cubic B – Spline Fuzzy Transforms for an Efficient and Secure Compression in Wireless Sensor Networks, Information Sciences, 339, 19-30.

Smarandache, F. (2005). A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. Infinite Study.

Tas, F. and Topal, S. (2017). Bezier Curve Modelling for Neutrosophic Data Problem. Neutrosophic set and system. University of New Mexico.

Topal, S. and Tas, F. (2018). Bézier Surface Modelling for Neutrosophic Data Problems. Neutrosophic set and system. University of New Mexico, 19, 19-23.

Alias. S. and Mohamad, D. (2017). A Review of the Neutrosophic Set and Its Development. Discovering Mathematics. 3(2), 61-69.

Wahab, A. F., Ali, J. M., Majid, A. A. and Tap, A. O. M. (2004). Fuzzy Set in Geometric Modelling, Proceedings International Conference on Computer Graphics, Imaging and Visualization, CGIV, Penang, 227–232.

Wahab, A. F., Ali, J. M. and Majid, A. A. (2009). Fuzzy geometric modelling, Sixth International Conference on Computer Graphics, Imaging and Visualization, 276-280.

Wahab, A. F., Ali, J. M., Majid, A. A. and Tap, A. O. M. (2010). Penyelesaian Masalah Data Ketakpastian Menggunakan Splin-B Kabur, Sains Malaysiana, 39(4), 661-670.

Yamaguchi, F. (199*). Curves and Surfaces in Computer Aided Geometric Design. Springer, Berlin.

Rogers, D. F. (2001). An Introduction to NURBS: With Historical Perspective, Academic Press. New York.

Farin, G. (2002). Curves and Surfaces for CAGD: A Practical Guide, 5th ed. Academic Press, New York,

Piegl, L. and Tiller, W. (1995). The NURBS Book (Springer-Verlag Berlin Heidelberg, Germany.

Ayasdi. (2024, March 7). What Exactly is Complex Data? Retrieved from https://www.ayasdi.com/blog/topology/exactly-complex-data/

ETL-Tools (2024, March 7). What is Complex Data? Retrieved from https://www.etl-tools.com/datawarehousing/complex-data.html.

Rosli, S. N. I., & Zulkifly, M. I. E. (2023). Neutrosophic Bicubic Bezier Surface Approximation Model for Uncertainty Data. MATEMATIKA, 39(3), 281–291. https://doi.org/10.11113/matematika.v39.n3.1502

Rosli, S. N. I., & Zulkifly, M. I. E. (2023). A Neutrosophic Approach for B-Spline Curve by Using Interpolation Method. Neutrosophic Systems with Applications, 9, 29–40. https://doi.org/10.61356/j.nswa.2023.43

Rosli, S. N. I., & Zulkifly, M. I. E. (2023). Neutrosophic Bicubic B-spline Surface Interpolation Model for Uncertainty Data. Neutrosophic Systems with Applications, 10, 25–34. https://doi.org/10.61356/j.nswa.2023.69

Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Neutrosophic B-spline Surface Approximation Model for 3- Dimensional Data Collection. Neutrosophic Sets and Systems, 63, 95-104. https://fs.unm.edu/nss8/index.php/111/article/view/3879

Rosli, S. N. I., & Zulkifly, M. I. E. (2023). 3-Dimensional Quartic Bézier Curve Approximation Model by Using Neutrosophic Approach. Neutrosophic Systems with Applications, 11, 11–21. https://doi.org/10.61356/j.nswa.2023.78

Downloads

Published

2024-08-16

How to Cite

Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Bézier Curve Interpolation Model for Complex Data by Using Neutrosophic Approach. EDUCATUM Journal of Science, Mathematics and Technology, 12(1), 1–9. https://doi.org/10.37134/ejsmt.vol12.1.1.2025