Transient Wave Propagation and Reflection in Long Penstocks with Delay Effects and Boundary Layer Damping

Authors

  • Fahri Maho Department of Hydraulics and Hydrotechnical Works, Polytechnic University of Tirana, 1000, Tirana, Albania

DOI:

https://doi.org/10.37134/jsml.vol14.1.11.2026

Keywords:

Transient flow, Water hammer, Viscous damping, Wavefront dispersion, Surge protection

Abstract

This study examined wave propagation and reflection in long, pressurised penstocks, ranging from 3 to 4 km, within high-head hydropower systems in Albania to address challenges in transient flow dynamics for enhanced design and operational safety. A modified one-dimensional model based on the Method of Characteristics (MOC) was developed, incorporating wall elasticity, unsteady friction, and wave travel delays, with analytical and numerical simulations conducted to assess their impacts. The results indicated a wave travel delay of 11.7% (3.44 s versus 3.08 s predicted by the classical model), accompanied by a phase shift of 0.33 rad at 0.13 Hz. Peak surge pressures were also reduced by 17.8% (176 m instead of 214 m), with cumulative attenuation reaching up to 26% over an 85 s interval. This damping effect was attributed to the progressive growth of the viscous boundary layer, reaching a thickness of ~0.057 m within 12 s, as well as the influence of unsteady friction. In pumped-storage operating scenarios, the model further showed that negative pressures were alleviated by 20% (-43 m compared with -54 m), highlighting the combined role of delay and damping mechanisms in surge wave mitigation. The study concludes that integrating these factors is essential for optimising surge protection, improving turbine regulation, and ensuring structural integrity in Albania’s high-head hydropower systems. Hydropower engineers and system designers in Albania can use the research results to optimise surge protection, enhance turbine regulation, and improve the structural safety of long penstock systems in high-head hydropower plants.

Downloads

Download data is not yet available.

References

Bergant A, Hässig S, Karadžić U, Urbanowicz K, Tijsseling A. (2021). Developments in multiple-valve water-hammer control. IOP Conference Series: Earth and Environmental Science, 774, 012008. doi:10.1088/1755-1315/774/1/012008

Bergant A, Tijsseling AS, Vítkovský JP, Covas DIC, Simpson AR, Lambert MF. (2010). Parameters affecting water-hammer wave attenuation, shape and timing-Part 1: Mathematical tools. Journal of Hydraulic Research, 48(5), 373-381. doi:10.3826/jhr.2008.2847

Bhushan S, Burgreen GW, Brewer W, Dettwiller ID. (2021). Development and validation of a machine learned turbulence model. Energies, 14(5), 1465. doi:10.3390/en14051465

Bondarenko IN, Galich AV, Slipchenko NI, Troitski SI. (2012). Cone-shaped resonator the high-order mode oscillation trasducers. 22nd International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings, 1, 565-567.

Cao Z, Wang Z, Deng J, Guo X, Lu L. (2022). Unsteady friction model modified with compression-expansion effects in transient pipe flow. Aqua - Water Infrastructure, Ecosystems and Society, 71(2), 330-344. doi:10.2166/aqua.2022.144

Chaudhry MN. (2014). Applied hydraulic transients. Springer, New York. doi:10.1007/978-1-4614-8538-4

Chen J, Yi S, Li X, Han G, Zhang Y, Yang Q, Yuan X. (2021). Theoretical, numerical and experimental study of hypersonic boundary layer transition: Blunt circular cone. Applied Thermal Engineering, 194, 116931. doi: 10.1016/j.applthermaleng.2021.116931

Cherniha R, Serov M. (2006). Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms, II. European Journal of Applied Mathematics, 17(5), 597-605. doi:10.1017/S0956792506006681

Di J, Fu J, Li Z, Li W, Liu L, Wu M. (2024). Long-wave-propagation delay correlation testing and pattern analysis. Scientific Reports, 15, 22446. doi:10.21203/rs.3.rs-4890573/v1

Di Renzo M, Urzay J. (2021). Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies. Journal of Fluid Mechanics, 912, A29. doi:10.1017/jfm.2020.1144

Dudley M, Schreuder J, Witte D, Rorabaugh D, Lang S. (2024). A review of relief valves in unsteady flow: Behavior, analysis, and design. In: Proceedings of the ASME 2024 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, New York, p. 1-10. doi:10.1115/PVP2024-123460

Fialko NM, Prokopov VG, Meranova NO, Borisov YuS, Korzhik VN, Sherenkovskaya GP. (1993). Thermal physics of gasothermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov, 4, 83-93.

Fritsch D, Vishwanathan V, Roy ChJ, Lowe T, Devenport WJ, Nishi Y, Knopp TA, Ströer P, Krumbein A, Sandberg RD, Lav Ch, Bensow R, Eca L, Toxopeus SL, Kerkvliet M, Slama M, Bordier L. (2021). Experimental and Computational Study of 2D Smooth Wall Turbulent Boundary Layers in Pressure Gradient. In: American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum. American Institute of Aeronautics and Astronautics, San Diego. doi:10.2514/6.2022-0696

Ghidaoui MS, Zhao M, McInnis DA, Axworthy DH. (2005). A review of water hammer theory and practice. Applied Mechanics Reviews, 58(1), 49-76. doi:10.1115/1.1828050

Golyshev LV, Fil' SA, Mysak IS, Kotel'nikov NI, Sidorenko AP. (2003a). Transient performance of a TPP-210A boiler performed with the use of a system of RCA-2000 analyzers. Power Technology and Engineering, 37(4), 244-247. doi:10.1023/A:1026385907278

Golyshev LV, Vinnitskii IP, Fil' SA, Mysak IS, Sidenko A, Mishchenko YM. (2003b). Economic parameters of the coal-fired TPP-210A boiler under nonstationary operating modes. Power Technology and Engineering, 37(5), 302-305. doi:10.1023/B:HYCO.0000009797.86215.08

Hassan JM, Al-Turaihi RS, Omran SH, Habeeb L, Shnawa AAF. (2021). Turbulent flow and boundary layer theory: Selected topics and solved problems. Bentham Science Publishers, Sharjah.

Huang J, Duan L, Choudhari MM. (2022). Direct numerical simulation of hypersonic turbulent boundary layers: Effect of spatial evolution and Reynolds number. Journal of Fluid Mechanics, 937, A3. doi:10.1017/jfm.2022.80

Iskandarov EK. (2021). Improving the efficiency of the functioning of gas pipelines, taking into account the structural features of gas flows. News of the National Academy of Sciences of the Republic of Kazakhstan Series of Geology and Technical Sciences, 3(447), 34-39. doi:10.32014/2021.2518-170X.59

Ismaiylova FB, Ismaiylov GG, Iskenderov ÉK, Dzhakhangirova KT. (2023). Construction of a Mathematical Model of the Flow Characteristics of a Multiphase Pipeline with Regard for the Phase Transitions in It. Journal of Engineering Physics and Thermophysics, 96(1), 73-78. doi:10.1007/s10891-023-02663-7

Kannaiyan A, Raj TK, Sarno L, Urbanowicz K, Martino R. (2024). A generalized mathematical model for the damped free motion of a liquid column in a vertical U-tube. Physics of Fluids, 36(10), 103626. doi:10.1063/5.0232548

Karney BW, McInnis D. (1992). Efficient calculation of transient flow in simple pipe networks. Journal of Hydraulic Engineering, 118(7), 1014-1030. doi:10.1061/(ASCE)0733-9429(1992)118:7(1014)

Kharlamov MYu, Krivtsun IV, Korzhyk VN. (2014). Dynamic model of the wire dispersion process in plasma-Arc spraying. Journal of Thermal Spray Technology, 23(3), 420-430. doi:10.1007/s11666-013-0027-4

Kohut A, Poliak O, Sidun I, Astakhova O, Onyshchenko A, Besaha K, Gunka V. (2025). A review of road bitumen modification methods. Part 2-Chemical modification. Chemistry and Chemical Technology, 19(1), 141-156. doi:10.23939/chcht19.01.141

Kononov Y, Lymar A. (2020). On the stability of coupled oscillations of the elastic bottom of a rigid rectangular channel and ideal liquid. Journal of Theoretical and Applied Mechanics (Bulgaria), 50(3), 292-303.

Kononov Y, Lymar O. (2022). Stability of the coupled liquid-elastic bottom oscillations in a rectangular tank. Journal of Theoretical and Applied Mechanics (Bulgaria), 52(2), 164-178. doi:10.55787/jtams.22.52.2.164

Korteweg DJ. (1878). On the propagation speed of sound in elastic tubes. Annals of Physics, 241(12), 525-542. doi:10.1002/andp.18782411206

Langcuyan CP, Sadiq S, Park T-W, Won M-S. (2023). Dynamic analysis of MSE wall subjected to surface vibration loading. Open Geosciences, 15(1), 20220592. doi:10.1515/geo-2022-0592

Li Z, Jin J, Pan Z, Sun J, Geng K, Qiao Y. (2025). Impact of branch pipe valve closure procedures on pipeline water hammer pressure: A case study of Xinlongkou hydropower station. Applied Sciences, 15(2), 897. doi:10.3390/app15020897

Long T. (2022). Application of momentum potential theory in the study of hypersonic boundary layer instabilities. Hong Kong Polytechnic University, Hong Kong.

Marchuk AV. (1999). Determination of the natural frequencies of vibration of nonuniform slabs. International Applied Mechanics, 35(2), 152-158. doi:10.1007/BF02682148

Marignetti F, Rubino G, Boukadida Y, Conti P, De Gregorio F, Iengo E, Giovanni Longobardi V. (2020). Noise and vibration analysis of an inverter-fed three-phase induction motor. In: 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020. Institute of Electrical and Electronics Engineers, Sorrento, p. 157-161. doi:10.1109/SPEEDAM48782.2020.9161859

Mutukutti-Arachchige RP. (2025). Development of the EMT-H water hydraulics model for mechanical power control of governors in hydro-electric plants. University of British Columbia, Vancouver. doi:10.14288/1.0449386

Neupane B. (2021). Long-term impact on unlined tunnels of hydropower plants due to frequent start/stop sequences. Norwegian University of Science and Technology, Trondheim.

Nicolet Y. (2020). Structure-function relationships of radical SAM enzymes. Nature Catalysis, 3, 337-350. doi:10.1038/s41929-020-0448-7

Pan B, Keramat A, Capponi C, Meniconi S, Brunone B, Duan HF. (2021). Transient energy analysis in water-filled viscoelastic pipelines. Journal of Hydraulic Engineering, 148(1), 1-26. doi:10.1061/(ASCE)HY.1943-7900.0001959

Panchenko A, Voloshina A, Fatyeyev A, Tynyanova I, Mudryk K. (2023). Stabilization of the Transient Dynamic Characteristics for a Hydraulic Drive with a Planetary Hydraulic Motor. In: Lecture Notes in Mechanical Engineering. Springer, Cham, pp. 95-105. doi:10.1007/978-3-031-32774-2_10

Panchenko A, Voloshina A, Kiurchev S, Titova O, Onopreychuk D, Stefanov V, Safoniuk I, Pashchenko V, Radionov H, Golubok M. (2018). Development of the universal model of mechatronic system with a hydraulic drive. Eastern-European Journal of Enterprise Technologies, 4(7-94), 51-60. doi:10.15587/1729-4061.2018.139577

Pejovic S, Zhang QF, Karney BW, Gajic A. (2011). Analysis of pump-turbine "S" instability and reverse waterhammer incidents in hydropower systems. In: Proceedings of the 4th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems. International Association for Hydro-Environment Engineering and Research, Belgrade, p. 1-16.

Plouraboué F. (2024). Review on water-hammer waves mechanical and theoretical foundations. European Journal of Mechanics - B/Fluids, 108, 237-271. doi:10.1016/j.euromechflu.2024.08.001

Ramirez M, Araya G. (2025). Stability analysis of unsteady laminar boundary layers subject to streamwise pressure gradient. Fluids, 10(4), 28. doi:10.3390/fluids10040100

Remeshevska I, Trokhymenko G, Gurets N, Stepova O, Trus I, Akhmedova V. (2021). Study of the ways and methods of searching water leaks in water supply networks of the settlements of Ukraine. Ecological Engineering and Environmental Technology, 22(4), 14-21. doi:10.12912/27197050/137874

Schuabb M, Duan L, Scholten A, Paredes P, Choudhari MM. (2024). Hypersonic boundary-layer transition over a blunt circular cone in a Mach 8 digital wind tunnel. In: American Institute of Aeronautics and Astronautics (AIAA) Aviation Forum and Ascend. American Institute of Aeronautics and Astronautics, Las Vegas. doi:10.2514/6.2025-3720

Smith D. (2024). The social impacts of dams and hydropower. In: Vanclay F, Esteves A-M (Eds.), Handbook of Social Impact Assessment and Management. Edward Elgar Publishing, Cheltenham pp. 51-66. doi:10.4337/9781802208870.00011

Sriram V, Saincher S, Yan S, Ma QW. (2024). The past, present and future of multi-scale modelling applied to wave-structure interaction in ocean engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382(2281), 20230316. doi:10.1098/rsta.2023.0316

Tang Y, Zhang HJ, Chen LQ, Ding Q, Gao Q, Yang T. (2025). Recent progress on dynamics and control of pipes conveying fluid. Nonlinear Dynamics, 113(7), 6253-6315. doi:10.1007/s11071-024-10486-1

Tijsseling AS. (1996). Fluid-structure interaction in liquid-filled pipe systems: A review. Journal of Fluids and Structures, 10(2), 109-146. doi:10.1006/jfls.1996.0009

Triki O, Cherif R, Yaddaden T. (2023). Improving measurement accuracy of acoustic intensity in vibrating machines using a Doosan robot. In: Proceedings of the 2023 4th International Informatics and Software Engineering Conference. Institute of Electrical and Electronics Engineers, Ankara, p. 1-6. doi:10.1109/IISEC59749.2023.10391014

Vardy AE, Brown JMB. (2003). Transient turbulent friction in smooth pipe flows. Journal of Sound and Vibration, 259(5), 1011-1036. doi:10.1006/jsvi.2002.5160

Vardy AE, Hwang KL. (1993). A weighting function model of transient turbulent pipe friction. Journal of Hydraulic Research, 31(4), 533-548. doi:10.1080/00221689309498876

Wang XD, Huang XW, Hu SD, Wang X, Wang WQ, Yan Y. (2025). Numerical study on the transient flow in a six-nozzle Pelton turbine during the load rejection process. Physics of Fluids, 37(4), 045159. doi:10.1063/5.0267358

Woldaregay MM, Aniley WT, Duressa GF. (2020). Novel numerical scheme for singularly perturbed time delay convection-diffusion equation. Advances in Mathematical Physics, 1, 6641236. doi:10.1155/2021/6641236

Wylie EB, Streeter VL, Suo L. (1993). Fluid transients in systems. Prentice-Hall, Englewood Cliffs.

Zadorozhnyi A, Chovnyuk Y, Stakhovsky O, Kovrevski A, Buhaievskyi S. (2023). Modeling the flow of a Bingham plastic fluid through a circular pipeline with different wall properties. AIP Conference Proceedings, 2490(1), 050028. doi:10.1063/5.0124547

Zadorozhnyi AA, Remarchuk MP, Kovrevski AP, Chovnyuk YV, Buhaievskyi SA. (2021). Correlation of rheological parameters with the flow of non-Newtonian fluids. IOP Conference Series: Materials Science and Engineering, 1021(1), 012056. doi:10.1088/1757-899X/1021/1/012056

Zeidan M, Ostfeld A. (2022). Unsteady friction modeling technique for Lagrangian approaches in transient simulations. Water, 14(1), 13. doi:10.3390/w14010013

Zhang X, Ye T, Jin G, Liu H, Xuan L. (2025). Multi-objective optimization of bionic guide vanes for flow rectification in elbow pipes based on convolutional neural network - Second-generation genetic algorithm. Physics of Fluids, 37(7), 043355. doi:10.1063/5.0268914

Zielke W. (1968). Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, 90(1), 109-115. doi:10.1115/1.3605049

Downloads

Published

2025-02-18

How to Cite

Maho, F. (2025). Transient Wave Propagation and Reflection in Long Penstocks with Delay Effects and Boundary Layer Damping. Journal of Science and Mathematics Letters, 14(1), 124-139. https://doi.org/10.37134/jsml.vol14.1.11.2026

Similar Articles

1-10 of 38

You may also start an advanced similarity search for this article.