Production of Artificial Seeds of Carica papaya L. var Eksotika

Authors

  • Nurul Shifa Radzuan Department of Agriculture Science, Faculty of Technical and Vocational, Universiti Pendidikan Sultan Idris
  • Nor Azlina Hasbullah Department of Agriculture Science, Faculty of Technical and Vocational, Universiti Pendidikan Sultan Idris
  • Fadhlul Khaliq Ab Patah Department of Agriculture Science, Faculty of Technical and Vocational, Universiti Pendidikan Sultan Idris
  • Husna Idris Department of Agriculture Science, Faculty of Technical and Vocational, Universiti Pendidikan Sultan
  • Mohammad Mohd Lassim Faculty of Sustainable Agriculture, Universiti Malaysia Sabah

DOI:

https://doi.org/10.37134/jsml.vol7.7.2019

Keywords:

Micro shoots, Encapsulation, Artificial seeds

Abstract

Artificial seed production technique for Carica papaya L. var Eksotika is considered as a valuable alternate technology of propagation. Limited availability of the elite genotypes apprehends the utility of the C. papaya L. var Eksotika plants, for industrial use and ecological improvement. Therefore, development of an efficient method for C. papaya L. var Eksotika artificial seeds production by encapsulation of micro shoots in sodium alginate matrix were produced. Artificial seeds of C. papaya L. var Eksotika were produced by encapsulated micro shoots of C. papaya L. varieties Eksotika propagated in vitro. The production of artificial plant seeds of this species offered ideal beads based upon stiffness, texture, size and shape of beads. It was found that 4% sodium alginate and harden in two hundred millimolar CaCl2.2H2O solution produced optimum beads with stiff, clear, round and homogeneous size for 30 minutes among the concentrations tested.

Downloads

Download data is not yet available.

References

Benasla, A., & Hausler, R. (2018). Optimisation of Growth of Raphidocelis subcapitata Immobilised for Biofuel Production: Influence of Alginate and CaCl2 Concentrations on Growth. Environments,5(5), 60. doi:10.3390/environments5050060

Etchepare, M. D., Barin, J. S., Cichoski, A. J., Jacob-Lopes, E., Wagner, R., Fries, L. L., & Menezes, C. R. (2015). Microencapsulation of probiotics using sodium alginate. Ciência Rural, 45(7), 1319-1326. doi:10.1590/0103-8478cr20140938

Hecht, H., & Srebnik, S. (2016). Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules,17(6), 2160-2167. doi:10.1021/acs.biomac.6b00378

Kesoju, S. R., Boydston, R. A., & Greene, S. L. (2016). Effect of Synthetic Auxin Herbicides on Seed Development and Viability in Genetically Engineered Glyphosate-Resistant Alfalfa. Weed Technology,30(04), 860-868. doi:10.1614/wt-d-16-00045.1

Mani, M., Kalyanasundaram, M., & Shivaraju, C. (2016). Fruit Crops: Papaya. Mealybugs and Their Management in Agricultural and Horticultural Crops,395-409. doi:10.1007/978-81-322-2677-2_42

Micheli, M., & Standardi, A. (2016). From Somatic Embryo to Synthetic Seed in Citrus spp. Through the Encapsulation Technology. In Vitro Embryogenesis in Higher Plants Methods in Molecular Biology,515-522. doi:10.1007/978-1-4939-3061-6_30

Pond, S., & Cameron, S. (2017). Artificial Seeds. Encyclopedia of Applied Plant Sciences,419-427. doi:10.1016/b978-0-12-394807-6.00227-6

Raju, C. S., Aslam, A., & Shajahan, A. (2016). Germination and storability of calcium-alginate coated somatic embryos of mango ginger (Curcuma amada Roxb.). Horticulture, Environment, and Biotechnology,57(1), 88-96. doi:10.1007/s13580-016-0096-7

Ranabhatt, H., & Kapor, R. (2017). Synthetic seeds. Plant Biotechnology, 191-208. doi:10.1201/9780429505676-11

Trivedi, M. K. (2015). Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Murashige and Skoog Plant Cell Culture Media. Cell Biology, 3(4), 50. doi:10.11648/j.cb.20150304.11

Downloads

Published

2019-08-08

How to Cite

Radzuan, N. S., Hasbullah, N. A., Ab Patah, F. K., Idris, H., & Lassim, M. M. (2019). Production of Artificial Seeds of Carica papaya L. var Eksotika. Journal of Science and Mathematics Letters, 7, 66–71. https://doi.org/10.37134/jsml.vol7.7.2019