Maximum Temperature Forecasting with an Automatic Forecasting Method Based on Deep Dendritic Artificial Neural Network (AutoDeepdenT)
DOI:
https://doi.org/10.37134/jsml.vol14.1.10.2026Keywords:
Forecasting, Deep Artificial Neural Network, Dendritic Neuron Model, Temperature Prediction, Explainable AIAbstract
Due to the global ecological crisis, accurate temperature prediction has become increasingly important, especially for environmental sustainability worldwide. The main motivation for this research is the increasing importance of temperature prediction due to the global ecological crisis. Considering the impacts of climate change and environmental sustainability, making accurate temperature predictions has become a critical necessity for the conservation of natural resources and the fight against climate change. In addition to traditional statistical techniques, the success of deep learning methods in solving complex relationships has become the focal point of research in this field. A large number of statistical techniques are used to predict air temperatures, but deep learning methods have recently become popular for complex relationships. More layers distinguish Deep Artificial Neural Networks (DANNs) from traditional Artificial Neural Networks (ANNs). Since they have multi-layered designs, they perform high-level inference in data analysis. This research has predicted temperature values using the Dendritic Neuron Model-Based Explainable Feedback Deep Artificial Neural Network (DeepDenT) architecture. The study consists of 412 monthly maximum temperature data covering 1991 to 2022 from the Giresun province. According to the results, the AutoDeepDenT method obtains more accurate predictions than all other tested models. This highlights the effectiveness of advanced deep learning techniques in temperature prediction and their importance for environmental sustainability.
Downloads
References
Abhishek K, Singh MP, Ghosh S, Anand A. (2012). Weather forecasting model using artificial neural network. Procedia Technology, 4, 311-318. doi:10.1016/J.PROTCY.2012.05.047
Afzali M, Afzali A, ZahediG. (2012). The potential of artificial neural network technique in daily and monthly ambient air temperature prediction. International Journal of Environmental Science and Development, 3(1), 33-38. doi:10.7763/IJESD.2012.V3.183
Bayyurt D, Deveci Kİ.(2023). Yapay sinir ağları NARX ile Türkiye fındık üretim miktarı tahmini, Giresun Üniversitesi İktisadi ve İdari Bilimler Dergisi, 9(1), 15-35. doi:10.46849/guiibd.1271782
Bas E, Egrioglu E, Cansu T. (2024). Robust training of median dendritic artificial neural networks for time series forecasting. Expert Systems with Applications, 238, 122080. doi:10.1016/j.eswa.2023.122080
Bilgili M, Sahin B. (2009). Prediction of long-term monthly temperature and rainfall in Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(1), 60-71. doi:10.1080/15567030802467522
De SS, Debnath A. (2009). Artificial neural network based prediction of maximum and minimum temperature in the summer monsoon months over India. Applied Physics Research, 1(2), 37. doi:10.5539/APR.V1N2P37
Deng L, Yu D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7, 197-387. doi:10.1561/2000000039
Doblas-Reyes FJ, García-Serrano J, Lienert F, Biescas AP, Rodrigues LRL. (2013). Seasonal climate predictability and forecasting: status and prospects. Wiley Interdisciplinary Reviews: Climate Change, 4(4), 245-268. doi:10.1002/WCC.217
Dombayci ÖA, Golcu M. (2009). Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey. Renewable Energy, 34(4), 1158-1161. doi:10.1016/j.renene.2008.07.007
Egrioglu E, Bas E. (2024). A new deep neural network for forecasting: Deep dendritic artificial neural network. Artificial Intelligence Review, 57, 171. doi:10.1007/s10462-024-10790-7
Fister D, Pérez-Aracil J, Peláez-Rodríguez C, Del Ser J, Salcedo-Sanz S. (2023). Accurate long-term air temperature prediction with machine learning models and data reduction techniques. Applied Soft Computing, 136, 110118. doi:10.1016/j.asoc.2023.110118
Jovic S, Nedeljkovic B, Golubovic Z, Kostic N. (2018). Evolutionary algorithm for reference evapotranspiration analysis. Computers and Electronics in Agriculture, 150, 1-4. doi:10.1016/j.compag.2018.04.003
Kisi O, Shiri J. (2014). Prediction of long-term monthly air temperature using geographical inputs. International Journal of Climatology, 34(1), 179-186. doi:10.1002/JOC.3676
Kreuzer D, Munz M, Schlüter S. (2020). Short-term temperature forecasts using a convolutional neural network - An application to different weather stations in Germany. Machine Learning with Applications, 2, 100007. doi:10.1016/J.MLWA.2020.100007
Lee S, Lee YS, Son Y. (2020). Forecasting daily temperatures with different time interval data using deep neural networks. Applied Sciences, 10, 1609. doi:10.3390/APP10051609
Marzo A, Trigo M, Alonso-Montesinos J, Martínez-Durbán M, López G, Ferrada P, Fuentealba E, Cortés M, Batlles FJ. (2017). Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renewable Energy, 113, 303-311. doi:10.1016/J.RENENE.2017.01.061
Pepler AS, Díaz LB, Prodhomme C, Doblas-Reyes FJ, Kumar A. (2015). The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes. Weather and Climate Extremes, 9, 68-77. doi:10.1016/J.WACE.2015.06.005
Roy DS. (2020). Forecasting the air temperature at a weather station using deep neural networks. Procedia Computer Science, 178, 38-46. doi:10.1016/j.procs.2020.11.005
Rumelhart DE, Hinton GE, McClelland JL.(1987). General framework for parallel distribution processing, MIT Press. p. 45-76.
Sahin M. (2012). Modelling of air temperature using remote sensing and artificial neural network in Turkey. Advances in Space Research, 50(7), 973-985. doi:10.1016/j.asr.2012.06.021
Salaudeen AA, Sathasivam S, Ali MKM, Abd Wahab NE. (2023). Forecasting sugar price fluctuation in Malaysia using geometric brownian motion modelling. Journal of Science and Mathematics Letters, 11(2), 83-92. doi:10.37134/jsml.vol11.2.10.2023
Salcedo-Sanz S, Deo RC, Carro-Calvo L, Saavedra-Moreno B. (2016). Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms.Theoretical and Applied Climatology, 125, 13-25. doi:10.1007/s00704-015-1480-4
Salcedo-Sanz S, Pérez-Aracil J, Ascenso G, Del Ser J, Casillas-Pérez D, KadowC, Fister D, Barriopedro D, García-Herrera R, Giuliani M, Castelletti A. (2024). Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review. Theoretical and Applied Climatology, 155(1), 1-44. doi:10.1007/s00704-023-04571-5
Schmidhuber J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003
Seager R, Cane M, Henderson N, Lee DE, Abernathey R, Zhang H. (2019). Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nature Climate Change,9(7), 517-522. doi:10.1038/s41558-019-0505-x
Tajfar E, Bateni SM, Margulis SA, Gentine P, Auligne T. (2020). Estimation of turbulent heat fluxes via assimilation of air temperature and specific humidity into an atmospheric boundary layer model. Journal of Hydrometeorology, 21(2), 205-225. doi:10.1175/JHM-D-19-0104.1
Tang C, Crosby BT, Wheaton JM, Piechota TC. (2012). Assessing streamflow sensitivity to temperature increases in the Salmon River Basin, Idaho. Global and Planetary Change, 88, 32-44. doi:10.1016/j.gloplacha.2012.03.002
The MathWorks Inc., MATLAB and Statistics Toolbox Release (2024). Regression Learner,.
Tran TTK, Bateni SM, Ki SJ, Vosoughifar H. (2021). A review of neural networks for air temperature forecasting. Water, 13(9), 1294. doi:10.3390/w13091294
Ustaoglu B, Cigizoglu HK, Karaca M. (2008). Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorological Applications: A Journal of Forecasting, Practical Applications, Training Techniques and Modelling, 15(4), 431-445. doi:10.1002/met.83
Valipour M, Bateni SM, Gholami Sefidkouhi MA, Raeini-Sarjaz M, Singh VP. (2020). Complexity of forces driving trend of reference evapotranspiration and signals of climate change. Atmosphere, 11(10), 1081. doi:10.3390/ATMOS11101081
Zhang Z, Dong Y. (2020). Temperature forecasting via convolutional recurrent neural networks based on time‐series data. Complexity, 3536572. doi:10.1155/2020/3536572
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Mehmet Akif Kara, Abdülkadir Keskin, Erol Egrioglu

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


