Review on Anthraquinones Isolated from Rubiaceae Family

Authors

  • Nur Afiqah Nadhiah Ammar Rushdan Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (UiTM) Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
  • Nurunajah Ab Ghani Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Level 9, FF3 Building, Universiti Teknologi MARA, UiTM Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
  • Nurulfazlina Edayah Rasol Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (UiTM) Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

DOI:

https://doi.org/10.37134/jsml.vol11.sp.18.2023

Keywords:

Anthraquinone, Rubiaceae, Morinda, Rennellia, Psychotria, Prismatomeris

Abstract

A current economic trend is to highlight natural resources and many plant species are rich sources of anthraquinones. Anthraquinones are a diverse group of natural compounds extensively studied in various articles. Commonly used for dyes with 30% of it contributed to textile industry. Anthraquinone plays an important chromophore in cancer chemotherapy. They are widely distributed in Rubiaceae family and exhibit various biological activities. Malaysian Rubiaceae, especially plants from Morinda, Rennellia, Psychotria, and Prismatomeris genera, have been known to be rich in anthraquinone content, especially in the roots. The current review aims to provide a comprehensive update on the isolation of anthraquinones from Rubiaceae family in Malaysia. It also discussed the taxonomy, chemistry, and pharmacology studies of the genus. Through the years, 45 anthraquinones have been reported from various species of Rubiaceae demonstrating promising pharmacological activities. The information presented in this review can provide a scientific foundation for future research on the possible therapeutic applications of the species. Enhancing the links between plant biological effects and traditional uses with their chemical characterization.

Downloads

Download data is not yet available.

Author Biographies

Nur Afiqah Nadhiah Ammar Rushdan, Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (UiTM) Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Nurunajah Ab Ghani, Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Level 9, FF3 Building, Universiti Teknologi MARA, UiTM Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Nurulfazlina Edayah Rasol, Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA (UiTM) Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

References

Abdullah MA, Ali AM, Marziah M, Lajis NH, Ariff AB. (1998). Establishment of cell suspension cultures of Morinda elliptica for the production of anthraquinones. Plant Cell Tissue Organ Cult. 54, 173–182.

Abdullah NH, Thomas NF, Sivasothy Y, Lee VS, Liew SY, Noorbatcha IA, Awang K. (2016). Hyaluronidase inhibitory activity of pentacylic triterpenoids from Prismatomeris tetrandra (Roxb.) K. Schum: Isolation, synthesis and QSAR study. International Journal of molecular sciences, 17(2), 143-163.

Ahmad R, Mahbob ENM, Noor ZM, Ismail NH, Lajis NH, Shaari K. (2010). Evaluation of antioxidant potential of medicinal plants from Malaysian Rubiaceae (subfamily Rubioideae). African Journal of Biotechnology, 9(46), 7948–7954.

Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M. (2005). Anthraquinones from Hedyotis capitellata. Phytochemistry, 66(10), 1141–1147.

Ali AM, Ismail NH, Mackeen MM, Yazan LS, Mohamed SM, Ho ASH, Lajis NH. (2000). Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. 38(4), 298–301.

Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, John C, Salleh RM, Ahmad W. (2021). In vitro cytotoxicity and anti-inflammatory cytokinine activity study of three isolated novel compounds of Prismatomeris glabra. Journal of Pharmacy & BioAllied Sciences, 13(1), 116–122.

Ayo RG, Amupitan JO, Zhao Y. (2007). Cytotoxicity and antimicrobial studies of 1,6,8-trihydroxy-3-methyl-anthraquinone (emodin) isolated from the leaves of Cassia nigricans Vahl. African Journal of Biotechnology, 6(11), 1276–1279.

Ban N, Giang VH, Linh TM, Lien LO, Ngoc NT, Thao DT, Nam NH, Xuan NX, Kiem PV, Minh CV. (2013). Two new 11-noriridoids from the aerial parts of Morinda umbellate. Phytochem. Lett. 6, 267–269.

Bao L, Qin L, Liu L, Wu Y, Han T, Xue L, Zhang Q. (2011). Anthraquinone compounds from Morinda officinalis inhibit osteoclastic bone resorption in vitro. Chemico-biological Interactions, 194(2-3), 97–105.

Calixto NO, Pinto ME, Ramalho S, Burger MC, Bobey AF, Young MC, Bolzani VD, Pinto ÂD. (2016). The genus Psychotria: phytochemistry, chemotaxonomy, ethnopharmacology and biological properties. Journal of the Brazilian Chemical Society, 27, 1355-1378.

Chiang, L. (2007). Enhanced anthraquinones production from adsorbent treated Morinda elliptica cell suspension cultures in production medium strategy. Elsevier Endress,

de-Carvalho AR, de Carvalho MG, Braz-Filho R, Vieira IJC. (2016). Psychotria genus: Chemical constituents, biological activities, and synthetic studies, 48, 231-261.

Ee GCL, Wen YP, Sukari MA, Go R, Lee HL. (2009). A new anthraquinone from Morinda citrifolia roots. Natural Product Research, 23(14), 1322–1329.

Endress PK. (1996). Homoplasy in Angiosperm flowers. Homoplasy, 303–325.

Elpel TJ. (2013). Botany in a day: The patterns method of plant identification: An herbal field guide to plant families of North America (6th edition) Pony, Mont.

García-sosa K, Villarreal-alvarez N, Lübben P, Peña-rodríguez LM. (2006). Chrysophanol , an antimicrobial anthraquinone from the root extract of Colubrina greggii. Journal of Mexico Chemical Society, 50(2), 76–78.

Handerson MR (1974). Malayan Wildflowers Dicotyledons (Vol.4): The Malayan Nature Society.

Hao J, Feng S, Qiu S, Chen T. (2011). Anthraquinone glycosides from the roots of Prismatomeris connata. Chinese Journal of Natural Medicines, 9, 42-45.

Hemwimon S, Pavasant P, Shotipruk A. (2007). Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Separation and Purification Technology, 54, 44-50.

Herna ÆM, Trujillo ÆR, Tandro YA. (2008). Anthraquinones from in vitro root culture of Morinda royoc L . Plant Cell, Tissue and Organ Culture, 94, 181–187.

Hutchinson J. (1973). The families of flowering plants. 3rd Edition, The Clarendon Press, Oxford, 519-524.

Ismail NH. (1999). Chemistry and biological activity of anthraquinones from Morinda elliptica (Rubiaceae) [Doctoral dissertation, Universiti Putra Malaysia].

Ismail NH, Alias A, Osman CP. (2012). Alkaloids and anthraquinones from Malaysian Flora. Phytochemicals - A Global Perspective of Their Role in Nutrition and Health. Flora InTech.

Jalaluddin S, Bruhl JJ. (2008). Testing species limits in Rennellia (Prismatomerideae, Rubioideae, Rubiaceae). Taxon, 57(1), 43–52.

Jayantha J, Jayasuriya B, Herath D, Suresh S. (2022). Determination of Anti-tuberculosis activity of Psychotria sarmentosa, Aponogeton crispus and two species of Pleurotus mushrooms. Research Journal of Pharmacy and Technology, 15(3), 954-960.

Johansson J, Wong K. (1998). The identity of Prismatomeris sussessills King & Gamble (Rubiaceae, Rubioideae). Blumea, 33, 351-356.

Kah-Hui C, Majid NI, Mohd-Yusof H, Mohd-Zainol K, Mohamad H, Mohd-Zin Z. (2020). Catechin profile and hypolipidemic activity of Morinda citrifolia leaf water extract. Heliyon, 6(6), e04337.

Kamiya K, Hamabe W, Tokuyama S, Satake T. (2009). New anthraquinone glycosides from the roots of Morinda citrifolia. Fitoterapia, 80(3), 196–199.

Kamiya K, Tanaka Y, Endang H, Umar M, Satake T. (2005). New anthraquinone and iridoid from the fruits of Morinda citrifolia. Chemical & Pharmaceutical Bulletin, 53(12), 1597–1599.

Kanokmedhakul K, Kanokmedhakul S. (2005). Biological activity of anthraquinones and triterpenoids from Prismatomeris fragrans. Journal of Ethnopharmacology, 100 (3), 284–288.

Kesonbuaa W, Chantaranothai P. (2013). The genus Morinda (Rubiaceae) in Thailand. Science Asia, 39(3), 331–339.

Kusada KO, Akamoto KN, Ishida MN, Amabe FU, Amiya KK, Izushina YM, Atake TS, Okuyama ST. (2011). The antinociceptive and anti-inflammatory action of the CHCl3 -Soluble phase and its main active component, damnacanthal, isolated from the root of Morinda citrifolia. Biological and Pharmaceutical Bulletin, 34(1), 103–107.

Ly SN, Garavito A, De-Block P, Asselman P, Guyeux C, Charr JC, Janssens S, Mouly A, Hamon P, Guyot R. (2020). Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae. PLoS ONE, 15(4), 1–21.

Marques A, Oliveira D, Lyra RP, Conserva LM. (2013). β-Carboline alkaloids from Psychotriabarbiflora DC. (Rubiaceae). Biochemical Systematics and Ecology, 50, 339–341.

Mongrand S, Badoc A, Patouille B, Lacomblez C, Chavent M, Bessoule JJ. (2005). Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition. Phytochemistry, 66(5), 549–559.

Nepokroeff M, Bremer B Sytsma KJ. (1999). Reorganization of the genus Psychotria and tribe Psychotrieae (Rubiaceae) inferred from ITS and rbcL sequence data. Systematic Botany 24, 5–27.

Nipun TS, Khatib A, Ahmed QU, Redzwan IE, Ibrahim Z, Khan AYF, Primaharinastiti R, Khalifa SAM, El-Seedi HR. (2020). Alpha-glucosidase inhibitory effect of Psychotria malayana Jack Leaf: A rapid analysis using infrared fingerprinting. Molecules, 25(18), 4161-4170.

Oben K, Ngosong G, Kuete V, Penlap V, Krohn K, Hussain H, Ephram A, Saeftel M, Ramadan S, Hoerauf A. (2006). Newbouldiaquinone A: A naphthoquinone – anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from Newbouldia laevis. Phytochemistry, 67(6), 605–609.

Ong HC. (2003). Rennellia Korth. In: Lemmens, RHMJ. and Bunyapraphatsara, N. (Editors): Plant Resources of South-East Asia No 12(3): Medicinal and poisonous plants 3. PROSEA Foundation, Bogor, Indonesia.

Ong HC, Norzalina J (1999). Malay herbal medicine in Gemencheh, Negeri Sembilan, Malaysia. Fitoterapia, 70,10–14.

Osman CP, Ismail NH. (2017). Rennellia elliptica Korth. Indonesian Journal of Tropical and Infectious Disease, 6(6), 131–140.

Osman CP, Ismail NH. (2018). Antiplasmodial anthraquinones from medicinal plants: The chemistry and possible mode of actions. Natural Product Communications, 13(12), 1591–1597.

Osman CP, Ismail NH, Wibowo A, Ahmad R. (2016). Two new pyranoanthraquinones from the root of Rennellia elliptica Korth. (Rubiaceae). Phytochemistry Letters, 16, 225–229.

Osman CP, Ismail NH, Ahmad R, Ahmat N, Awang K, Jaafar FM. (2010). Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae). Molecules 15(10), 7218–7226.

Rath G, Ndonzao M, Hostettmann K. (1995). Antifungal anthraquinones from Morinda lucida. International Journal of Pharmacognosy, 33(2), 107–114.

Ratnayakel WMKM, Suresh TS, Abeysekeraz AM, Salim Nazeera, Chandrika UG. (2017). Prophylactic and therapeutic chronic anti- inflammatory effect of Psychatria sormentosa leaves on adjuvant-induced arthritis rat model prophylactic and therapeutic chronic anti-inflammatory. 6th Young Scientists Forum Symposium Conference, Agricultural Biotechnology Centre, University of Peradeniya, Peradeniya.

Ridley HN. (1923). The Flora of the Malay Peninsula. Volume II: Gamopetalae. L. Reeve and Co.Ltd. London

Robbrecht E. (1989). A remarkable new Chazaliella (African Psychotrieae), exemplifying the taxonomic value of pyrene characters in the Rubiaceae. Bulletin du Museum National d’Histoire Naturelle 4e Section B, Adansonia, Botanique, Phytochimie 11, 341–349.

Rohayu IMR (2020). In Vitro Cytotoxic Effect of Dichloromethane Extract of Prismatomeris glabra in Human Breast Cancer Cells. Asian Journal of Medicine and Biomedicine, 4(1), 59-66.

Ruksilp T, Sichaem J, Khumkratok S, Siripong P, Tip-Pyang S. (2011). Anthraquinones and an iridoid glycoside from the roots of Morinda pandurifolia. Biochemical Systematics and Ecology, 39, 888-892.

Salleh WMNHW, Jibril S, Abed SA. (2019). Genus Prismatomeris (Rubiaceae): Phytochemistry and their biological activities. International Journal of Green Pharmacy, 13(2), 92-97.

Sina H, Dramane G, Tchekounou P, Fidèle M, Chabi-sika K, Boya B, Socohou A, Adjanohoun A, Baba-moussa L. (2021). Phytochemical composition and in vitro biological activities of Morinda citrifolia fruit juice. Saudi Journal of Biological Sciences, 28(2), 1331–1335.

Sohmer SH. (1988) The nonclimbing species of the genus Psychotria (Rubiaceae) in New Guinea and the Bismarck Archipelago. Bishop Museum Bulletins in Botany, 1,1–339.

Sohmer SH. Davis AP. (2007). The genus Psychotria (Rubiaceae) in the Philippine Archipelago. Botanical Research Institute of Texas, Texas.

Solomon O, Peter A, Oluwasogo A. (2022). Genus Morinda: An insight to its ethnopharmacology, phytochemistry, pharmacology and industrial applications. Arabian Journal of Chemistry, 15(9), 104024.

Son NT. (2017). An overview of the genus Prismatomeris: Phytochemistry and biological activity. Bulletin of Faculty of Pharmacy, Cairo University, 55(1), 11–18.

Srisuk T, Chamchumroon V, Pornpongrungrueng P. (2020). New records of the genus Psychotria (Rubiaceae) from Thailand. Thai Forest Bulletin (Botany), 48(2), 101-107

Steyermark JA. (1972). Memoirs of The New York Botanical Garden, 23, 404–717.

Suratman S. (2008). The Indonesian Species of Rennellia Korth. (Rubiaceae). Biodiversitas Journal of Biological Diversity, 9(4), 259–263.

Tuntiwachwuttikul P, Butsuri Y, Sukkoet P, Prawat U, Taylor WC. (2008). Anthraquinones from the roots of Prismatomeris malayana. Natural product research, 22(11), 962–968.

Turner IM, Kumar VS. (2018). Flora of Singapore precursors, 4. A summary of scandent Psychotria (Rubiaceae) in Singapore and Peninsular Malaysia. Phytotaxa, 361(2), 183–197.

Wakawa HY, Ahmad FB, Musa S, Bulama H, Malgwi JM. (2022). Antibacterial and Antifungal Activities of Leaf Extract of Morinda elliptica. Borneo Journal of Resource Science and Technology, 12(2), 96-100.

WFO (2021): World Flora Online. Published on the Internet; http://www.worldfloraonline.org.

Wijnsma R. Verpoorte R. (1986). Anthraquinones in the Rubiaceae. In: Herz, W., Grisebach, H., Kirby, G.W., Tamm, C. (eds) Fortschritte der Chemie organischer Naturstoffe. Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe . Progress in the Chemistry of Organic Natural Products, vol 49. Springer, Vienna.

Wikström N, Kainulainen K, Razafimandimbison SG, Smedmark JEE, Bremer B. (2015). A revised time tree of the asterids: Establishing a temporal framework for evolutionary studies of the coffee family (Rubiaceae). PLoS ONE, 10(5), 1–26.

Wong KM. (1984). A revision of Rennellia (Rubiaceae) in the Malay Peninsular. Gard. Bull. Singapore, 37, 193-198.

Wong KM. (1989) Rubiaceae. In: Ng, F.S.P. (Ed.) Tree Flora of Malaya. Vol. 4. Longman Malaysia Sdn. Berhad, Petaling Jaya, pp. 324–425.

Wong KY, Vikram P, Chiruvella KK, Mohammed A. (2015). Phytochemical screening and antimicrobial potentials of Borreria sps (Rubiaceae). Journal of King Saud University - Science, 27(4), 302–311.

Zhen RY. (1998). Notes on the genus Prismatomeris Thw. (Rubiaceae) of China, J. Syst. Evol. Acta Phytotaxonomica Sin. 26(6): 443–449.

Downloads

Published

2023-12-22

How to Cite

Ammar Rushdan, N. A. N., Ab Ghani, N., & Rasol, N. E. (2023). Review on Anthraquinones Isolated from Rubiaceae Family. Journal of Science and Mathematics Letters, 11, 163–174. https://doi.org/10.37134/jsml.vol11.sp.18.2023

Issue

Section

Articles