Functional Relations as a Tool for Analysing Differential Equations

Authors

  • Elaman Kenenbaev Institute of Mathematics of National Academy of Sciences of the Kyrgyz Republic, Bishkek 720071, Kyrgyz Republic
  • Gulay Kenenbaeva Institute of Mathematics and Informatics, Kyrgyz National University named after Jusup Balasagyn, Bishkek 720033, Kyrgyz Republic
  • Gulzat Abakirova Institute of Mathematics and Informatics, Kyrgyz National University named after Jusup Balasagyn, Bishkek 720033, Kyrgyz Republic
  • Farkhat Nazarbaev Institute of Mathematics and Informatics, Kyrgyz National University named after Jusup Balasagyn, Bishkek 720033, Kyrgyz Republic

DOI:

https://doi.org/10.37134/jsml.vol13.2.6.2025

Keywords:

symmetric Lie analysis, transformations, stochastic systems, Monte Carlo methods, Fokker-Planck equations

Abstract

This paper examines the use of functional relations as a comprehensive analytical instrument for resolving and streamlining differential equations across many categories, including linear, nonlinear, stochastic, delayed, and hybrid systems. The objective is to augment model interpretability, diminish dimensionality, and optimise computational efficiency in intricate systems. The methodology incorporates symmetric Lie analysis, stochastic calculus, operator theory, and symbolic computation. Functional relationships were established using infinitesimal symmetries, Lyapunov functionals, and moment-based analysis. Numerical and symbolic experiments were conducted utilising Maple, Mathematica, and MATLAB. Functional relations lowered model dimensionality by as much as 40% and enhanced prediction accuracy. For the Korteweg de Vries (KdV) equation, scale-invariant relationships accurately represented soliton dynamics with an error margin of less than 1.8%. In stochastic systems, functional connections among moments reduced prediction errors by 12%. In hybrid systems, piecewise invariants reduced oscillation amplitudes by 25%. Inverse problems demonstrated a 13% improvement in parameter reconstruction accuracy and an 18% reduction in calculation time. Functional relations provide a strong foundation for analysing differential equations, especially in systems marked by nonlinearity, uncertainty, or structural complexity. The results endorse the incorporation of functional relationships into control systems, digital twins, and hybrid models. Their formalisation and adaptive implementation create new opportunities for interpretable, resource-efficient modelling in applied sciences and engineering.

Downloads

Download data is not yet available.

References

Alsharidi AK, Muhib A. (2025). Functional differential equations in the non-canonical case: New conditions for oscillation. AIMS Mathematics, 10(3), 7256-7268. doi:10.3934/math.2025332

Amourah A, Frasin BA, Salah J, Al-Hawary T. (2024). Fibonacci numbers related to some subclasses of Bi-Univalent functions. International Journal of Mathematics and Mathematical Sciences, 8169496. doi:10.1155/2024/8169496

Asanov A, Orozmamatova J. (2019). About uniqueness of solutions of fredholm linear integral equations of the first kind in the axis. Filomat, 33(5), 1329-1333. doi:10.2298/FIL1905329A

Ayoade AA, Agboola SO. (2022). Mathematical analysis of the causes of examination malpractices in Nigeria: An Epidemic Modelling approach. Journal of Science and Mathematics Letters, 10(1), 44-54. doi: 10.37134/jsml.vol10.1.5.2022

Bakkyaraj T, Sahadevan R. (2014). Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative. Nonlinear Dynamics, 80(1-2), 447-455. doi:10.1007/s11071-014-1881-4

Bender CM, Orszag SA. (1999). Advanced mathematical methods for scientists and engineers: Asymptotic methods and perturbation theory. New York: Springer.

Biswas A, Berkemeyer T, Khan S, Moraru L, Yıldırım Y, Alshehri HM. (2022). Highly dispersive optical soliton perturbation, with maximum intensity, for the complex Ginzburg-Landau equation by semi inverse variation. Mathematics, 10(6), 987. doi:10.3390/math10060987

Cherniha R, Serov M. (2006). Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms, II. European Journal of Applied Mathematics, 17(5), 597-605. doi:10.1017/S0956792506006681

Corduneanu C, Li Y, Mahdavi M. (2016). Functional differential equations: Advances and applications. Hoboken: John Wiley & Sons.

Dafermos CM. (2021). Hyperbolic conservation laws: Past, present, future. In: J.M. Morel, B. Teissier (Eds.), Mathematics Going Forward: Collected Mathematical Brushstrokes. Cham: Springer.

Dinzhos RV, Lysenkov EA, Fialko NM. (2015). Features of thermal conductivity of composites based on thermoplastic polymers and aluminum particles. Journal of Nano- and Electronic Physics, 7(3), 03022.

Djakov P, Mityagin B. (2007). Fourier method for one dimensional Schrödinger operators with singular periodic potentials. In: Ball, J.A., Bolotnikov, V., Rodman, L., Spitkovsky, I.M., Helton, J.W. (eds) Topics in Operator Theory. Operator Theory: Advances and Applications, Birkhäuser Basel. doi:10.1007/978-3-0346-0161-0_9

Drazin PG, Johnson RS. (2022). Solitons: An introduction. Cambridge: Cambridge University Press.

Dzurina J. (2025). Oscillation of Bounded solutions of delay differential equations. Mathematics, 13(1), 49. doi:10.3390/math13010049

Finogenko IA. (2017). Invariance principle for nonautonomous functional-differential equations with discontinuous right-hand sides. Doklady Mathematics, 96(3), 612-615. doi:10.1134/S1064562417060217

Frank TD. (2005). Nonlinear Fokker-Planck equations: Fundamentals and applications. Heidelberg: Springer Berlin.

Goriely A. (2018). Applied mathematics: A very short introduction. Oxford: Oxford University Press.

Grace SR, Graef JR, Jadlovska I. (2020). Oscillatory behavior of second order nonlinear delay differential equations with positive and negative nonlinear neutral terms. Differential Equations and Applications, 12(2), 201-211. doi:10.7153/dea-2020-12-13

Gross F, Osgood CF. (2001). Functional differential equations. Complex Variables, Theory and Application, 43(3-4), 285-291. doi:10.1080/17476930108815319

Karaiev O, Bondarenko L, Halko S, Miroshnyk O, Vershkov O, Karaieva T, Shchur T, Findura P, Prístavka M. (2021). Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae, 24(3), 119-123. doi:10.2478/ata-2021-0020

Kerimkhulle S, Aitkozha Z. (2017). A criterion for correct solvability of a first order difference equation. AIP Conference Proceedings, 1880, 040016. doi:10.1063/1.5000632

Kevrekidis, I.G., Gear, C.W., Hummer, G. 2020. Equation-free: The computer-aided analysis of complex multiscale systems. AIChE Journal, 66(10), e16889. doi:10.1002/aic.16889

Khotsianivskyi V, Sineglazov V. (2023). Robotic manipulator motion planning method development using neural network-based intelligent system. Machinery & Energetics, 14(4), 131-145. doi:10.31548/machinery/4.2023.131

Kiurchev S, Verkholantseva V, Kiurcheva L, Dumanskyi O. (2020). Physical-mathematical modeling of vibrating conveyor drying process of soybeans. Engineering for Rural Development, 19, 991-996. doi:10.22616/ERDev.2020.19.TF234

Leake C, Johnston H, Mortari D. (2020). The multivariate theory of functional connections: Theory, proofs, and application in partial differential equations. Mathematics, 8(8), 1303. doi:10.3390/math8081303

Logan JD. (2015). Applied mathematics. Hoboken: John Wiley & Sons.

Magal P, Ruan S. (2018). Functional differential equations. In: Theory and Applications of Abstract Semilinear Cauchy Problems. Cham: Springer.

Mashuri A, Adenan NH, Karim NSA, Siew WT, Zeng Z. (2024). Application of chaos theory in different fields - a literature review. Journal of Science and Mathematics Letters, 12(1), 92-101. doi: 10.37134/jsml.vol12.1.11.2024

Mazakova A, Jomartova S, Wójcik W, Mazakov T, Ziyatbekova G. (2023). Automated linearization of a system of nonlinear ordinary differential equations. International Journal of Electronics and Telecommunications, 69(4), 655-660. doi:10.24425/ijet.2023.147684

Mesquita JG, Oliveira TR, dos Reis HC. (2024). Slow and fast dynamics in measure functional differential equations with state-dependent delays through averaging principles and applications to extremum seeking. ArXiv, doi:10.48550/arXiv.2412.20362

Moaaz O, Muhib A, Santra SS. (2021). An oscillation test for solutions of second-order neutral differential equations of mixed type. Mathematics, 9(14), 1634. doi:10.3390/math9141634

Nicolis G, Prigogine I. (1989). Exploring complexity. New York: W.H. Freeman & Company.

Olver PJ. (1993). Applications of lie groups to differential equations. New York: Springer.

Perehuda O, Stanzhytskiy A, Martynyuk O. (2025). On existence and continuation of mild solutions of functional-differential equations of neutral type in Banach spaces. ArXiv, doi:10.48550/arXiv.2502.05636

Picard R, Trostorff S, Waurick M. (2012). A functional analytic perspective to delay differential equations. Operators and Matrices, 8(1), 217-236. doi:10.7153/oam-08-12

Platzer A. (2011). The structure of differential invariants and differential cut elimination. Logical Methods in Computer Science, 8(4), 809. doi:10.2168/LMCS-8(4:16)2012

Pysarenko G, Voinalovich O, Maylo A, Pysarenko S. (2022). A methodical approach to determining the damage characteristics of cyclically loaded samples of metal structures. Machinery & Energetics, 13(4), 28-37. doi:10.31548/machenergy.13(4).2022.28-37

Raissi M, Perdikaris P, Karniadakis GE. (2019). Physics informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707. doi:10.1016/j.jcp.2018.10.045

Recabov IS, Nuriyev MN. (2021). Evaluation of deformation properties of elastic fibres in threads. Fibres and Textiles in Eastern Europe, 29(5), 34-36. doi:10.5604/01.3001.0014.9293

Salah J, Rehman HU, Buwaiqi IA. (2023). Inclusion results of a generalized mittag-leffler-type poisson distribution in the k-uniformly janowski starlike and the k-janowski convex functions. Mathematics and Statistics, 11(1), 22-27. doi:10.13189/ms.2023.110103

Schiassi E, Leake C, De Florio M, Johnston H, Furfaro R, Mortari D. (2021). Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing, 457, 334-345. doi:10.1016/j.neucom.2021.06.015

Schlichting H, Gersten K. (2017). Boundary-layer theory. Heidelberg: Springer Berlin.

Simulik VM, Zajac TM. (2019). The variety of approaches to the problem of the derivation of Dirac equation. Scientific Herald of Uzhhorod University. Series "Physics", 45, 92-103. doi:10.24144/2415-8038.2019.45.92-103

Tashimbetova A, Rysbaeva A, Suleimenov Z, Kalybekova Z, Sydykova D. (2018). Clusters in the gas dynamics and mathematical modeling in mathcade the results of the study. International Journal of Engineering and Technology(UAE), 7, 321-323. doi:10.14419/ijet.v7i2.29.13646

Thinh LV, Tuan HT, Wang D, Yang Y. (2025). Fractional coupled Halanay inequality and its applications. ArXiv, doi:10.48550/arXiv.2501.17390

Yaremenko MI. (2023). Sequences of the projection-valued measures and functional calculi. Journal of Science and Mathematics Letters, 11(2), 39-47. doi: 10.37134/jsml.vol11.2.5.2023

Zhu A, Jin P, Tang Y. (2020). Deep Hamiltonian networks based on symplectic integrators. ArXiv, doi:10.48550/arXiv.2004.13830

Downloads

Published

2025-10-01

How to Cite

Kenenbaev, E., Kenenbaeva, G., Abakirova, G., & Nazarbaev, F. (2025). Functional Relations as a Tool for Analysing Differential Equations. Journal of Science and Mathematics Letters, 13(2), 72-86. https://doi.org/10.37134/jsml.vol13.2.6.2025

Similar Articles

1-10 of 146

You may also start an advanced similarity search for this article.