Isolation of Phytochemicals from Calophyllum nodosum and In Silico Evaluation of Their Drug-Likeness and DNA Gyrase Inhibition Potential

Authors

  • Yiizamy Suffian Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Vivien Yi Mian Jong Faculty of Applied Science Studies, Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia
  • Ainaa Nadiah Abd Halim Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Jiumn-Yih Wu Department of Food Science, National Quemoy University, Kinmen, 890301, Taiwan
  • Wafa M. Al Madhagi Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sana’a University, 31220 Sana’a, Yemen
  • Nor Hisam Zamakshshari Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.37134/jsml.vol14.1.1.2026

Keywords:

ADME, Antibacterial, Calophyllum nodosum, DNA gyrase, Molecular docking, Phytoconstituents

Abstract

The Calophyllum species have gained a lot of attention for their structurally diverse secondary metabolites with potential biological activities, including antibacterial scaffolds. A detailed study done on the phytochemical profile of the Calophyllum nodosum stem bark has led to the isolation of three xanthones, trapezifolixanthone (1), caloxanthone C (2), 1-hydroxy-7-methoxyxanthone (3), and a cyclic ester, canumolactone (4). Their structures were characterised using spectroscopic techniques like NMR, MS, and IR, and the spectra were confirmed with the previous literature. The pharmacokinetic properties of the compounds were predicted using SwissADME and cross-validated using pkCSM, while molecular docking simulation against bacterial DNA gyrase was performed using Autodock Vina. All isolated compounds met the drug-likeness requirements under Lipinski’s rule, according to the ADMET predictions, showing favourable oral and gastrointestinal bioavailability and absorption. Canumolactone (4), in particular, showed the best combination of solubility, clearance, and the least amount of CYP liabilities. The molecular docking simulation revealed that trapezifolixanthone (1) gave the strongest binding affinity to DNA gyrase among all isolated compounds, surpassing the binding affinity of the standard inhibitor, BDBM50198240. The current study presents the first combined ADMET predictions and molecular docking analysis for compounds isolated from C. nodosum. The findings provide preliminary evidence of their potential as drug-like scaffolds for future pharmacological development.

Downloads

Download data is not yet available.

References

Al Azzam KM. (2023). SwissADME and pkCSM webservers predictors: an integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Kompleksnoe Ispolzovanie Mineralnogo Syra, 325(2), 14-21. doi:10.31643/2023/6445.13

Bellon S, Parsons JD, Wei Y, Hayakawa K, Swenson LL, Charifson PS, Lippke JA, Aldape R, Gross CH. (2004). Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 Kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrobial Agents and Chemotherapy, 48(5), 1856-1864. doi:10.1128/AAC.48.5.1856-1864.2004

Chinthu RV, Raveendran PB, Raveendran M. (2023). A review on the genus Calophyllum (Clusiaceae): a potential medicinal tree species. Plant Science Today, 10(3), 1-5. doi:10.14719/PST.1818

Collin F, Karkare S, Maxwell A. (2011). Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Applied Microbiology and Biotechnology, 92(3), 479-497. doi:10.1007/S00253-011-3557-Z/FIGURES/7

Daina A, Michielin O, Zoete V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. doi:10.1038/SREP42717

Dharmaratne HRW, Napagoda MT, Tennakoon SB. (2009). Xanthones from roots of Calophyllum thwaitesii and their bioactivity. Natural Product Research, 23(6), 539-545. doi:10.1080/14786410600899118

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891-3898. doi:10.1021/ACS.JCIM.1C00203

Egan WJ, Merz KM, Baldwin JJ. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867-3877. doi:10.1021/JM000292E

Ertl P, Schuffenhauer A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1, 1-11. doi:10.1186/1758-2946-1-8/TABLES/1

Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. (2019). Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytotherapy Research, 33(1), 13-40. doi:10.1002/PTR.6208

Farida, S., Jenie, R. I., & Fakhrudin, N. (2024). Calophyllum inophyllum: A Comprehensive Analysis of its Ethnobotanical, Phytochemical, and Pharmacological Properties. Majalah Obat Tradisional, 29(2), 121–142. doi:10.22146/mot.87488

Feng Z, Lu X, Gan L, Zhang Q, Lin L. (2020). Xanthones a promising anti-inflammatory scaffold: structure, activity, and drug likeness analysis. Molecules, 25(3), 598. doi:10.3390/MOLECULES25030598

Ghose AK, Viswanadhan VN, Wendoloski JJ. (1998). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery: A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55-68. doi:10.1021/CC9800071

Glanzmann N, de Oliveira Lemos AS, Meinel RS, Torres Branca M, Mayrink NS, Da Costa Nunes IK, Pereira H, MG, Coimbra ES, Fabri RL, da Silva AD. (2024). New quinoline derivatives and their antimicrobial potential against Candida albicans and Staphylococcus aureus. ChemistrySelect, 9(36), e202401828. doi:10.1002/SLCT.202401828

Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. (2020). Inhibition and induction of CYP enzymes in humans: an update. Archives of Toxicology, 94(11), 3671-3722. doi:10.1007/S00204-020-02936-7/TABLES/14

Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8), 1-17. doi:10.1186/1758-2946-4-17/FIGURES/14

Heilman DNAA, Hui AYC, Jong VYM, Ahmad FB, Cee LP, Stanslas J, Zamakshshari NH. (2023). Unlocking the antibacterial potential of xanthone from Calophyllum species: Inhibition of nucleic acid synthesis. ChemistrySelect, 8(46), e202302737. doi:10.1002/SLCT.202302737

Hong Z, Yu TT, Yasir M, Sara M, Black DSC, Willcox MDP, Kuppusamy R, Kumar N. (2024). Daidzein-based amphiphilic small molecular antimicrobial peptidomimetics as novel antimicrobial agents with anti-Biofilm activity. ChemistrySelect, 9(22), e202400502. doi:10.1002/SLCT.202400502

Karunakaran T, Firouz NS, Santhanam R, Jong VYM. (2022). Phytochemicals from Calophyllum macrocarpum Hook.f. and its cytotoxic activities. Natural Product Research, 36(2), 654-659. doi:10.1080/14786419.2020.1795658

Kurniawan YS, Priyangga KTA, Jumina, Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. (2021). An update on the anticancer activity of xanthone derivatives: a review. Pharmaceuticals, 14(11), 1144. doi:10.3390/PH14111144

Lagares LM, Minovski N, Novič M. (2019). Multiclass classifier for P-glycoprotein substrates, inhibitors, and non-active compounds. Molecules, 24(10), 2006. doi:10.3390/MOLECULES24102006

Lee J, Beers JL, Geffert RM, Jackson KD. (2024). A review of CYP-mediated drug interactions: mechanisms and in vitro drug-drug interaction assessment. Biomolecules, 14(1), 99. doi:10.3390/BIOM14010099

Leslie Gunatilaka AA, Jasmin De Silva AMY, Sotheeswaran S. (1982). Minor xanthones of Hypericum mysorense. Phytochemistry, 21(7), 1751-1753. doi:10.1016/S0031-9422(82)85053-X

Li Z, Chen K, Rose P, Zhu YZ. (2022). Natural products in drug discovery and development: Synthesis and medicinal perspective of leonurine. Frontiers in Chemistry, 10, 1036329. doi:10.3389/FCHEM.2022.1036329/BIBTEX

Lizazman MA, Jong VYM. (2024). Antioxidant potential of Calophyllum canum P.F. Stevens: Xanthones, phenolics, and radical scavenging activity. [Preprint], Universiti Teknologi MARA. doi:10.21203/RS.3.RS-4336474/V1

Lizazman MA, Jong VYM, Chua PF, Lim WK, Karunakaran T. (2023). Phytochemicals from Calophyllum canum Hook f. ex T. Anderson and their neuroprotective effects. Natural Product Research, 37(12), 2043-2048. doi:10.1080/14786419.2022.2116021

Möbitz H. (2024). Design principles for balancing lipophilicity and permeability in beyond rule of 5 Space. ChemMedChem, 19(5), e202300395. doi:10.1002/CMDC.202300395

Morak-Młodawska B, Jeleń M, Martula E, Korlacki R. (2023). Study of lipophilicity and ADME properties of 1,9-diazaphenothiazines with anticancer action. International Journal of Molecular Sciences, 24(8), 6970. doi:10.3390/IJMS24086970

Morris GM, Ruth H, Lindstrom W, Sanne MF, Belew RK, Goodsell DS, Olson AJ. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. doi:10.1002/JCC.21256

Muegge I, Heald SL, Brittelli D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841-1846. doi:10.1021/JM015507E

Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles AG, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Naghavi M.(2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629-655. doi.org/10.1016/S0140-6736(21)02724-0

Newman DJ, Cragg GM. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. doi:10.1021/acs.jnatprod.9b01285

Ononamadu CJ, Ibrahim A. (2021). Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. BioTechnologia, 102(1), 85. doi:10.5114/BTA.2021.103765

Oprea TI, Allu TK, Fara DC, Rad RF, Ostopovici L, Bologa CG. (2007). Lead-like, drug-like or “Pub-like”: How different are they?. Journal of Computer-Aided Molecular Design, 21, 113-119. doi:10.1007/S10822-007-9105-3/TABLES/4

Pinto MMM, Palmeira A, Fernandes C, Resende DISP, Sousa E, Cidade H, Tiritan ME, Correia-Da-silva M, Cravo S. (2021). From natural products to new synthetic small molecules: A journey through the world of xanthones. Molecules, 26(2), 431. doi:10.3390/MOLECULES26020431

Pires DEV, Blundell TL, Ascher DB. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. doi:10.1021/ACS.JMEDCHEM.5B00104

Rai M, Singh AV, Paudel N, Kanase A, Falletta E, Kerkar P, Heyda J, Barghash RF, Pratap Singh S, Soos M. (2023). Herbal concoction unveiled: A computational analysis of phytochemicals’ pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Current Research in Toxicology, 5, 100118. doi:10.1016/J.CRTOX.2023.100118

Ranjith D, Ravikumar C. (2019). SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq. Journal of Pharmacognosy and Phytochemistry, 8(5), 2063-2073.

Remali J, Sahidin I, Aizat WM. (2022). Xanthone biosynthetic pathway in plants: a review. Frontiers in Plant Science, 13, 809497. doi:10.3389/FPLS.2022.809497/BIBTEX

Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. (2023). Antimicrobial resistance: a growing serious threat for global public health. Healthcare, 11(13), 1946. doi:10.3390/HEALTHCARE11131946

Trott O, Olson AJ. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. doi:10.1002/JCC.21334

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615-2623. doi:10.1021/JM020017N

Wei W, Cherukupalli S, Jing L, Liu X, Zhan P. (2020). Fsp3: A new parameter for drug-likeness. Drug Discovery Today, 25(10), 1839-1845. doi:10.1016/J.DRUDIS.2020.07.017

Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(1), 5-14. doi:10.1093/NAR/GKAB255

Yeni Y, Rachmania RA. (2022). The prediction of pharmacokinetic properties of compounds in Hemigraphis alternata (Burm.F.) T. Ander leaves using pkCSM. Indonesian Journal of Chemistry, 22(4), 1081-1089. doi:10.22146/IJC.73117

Zailan AAD, Karunakaran T, Abu Bakar MH, Jong VYM. (2022). The Malaysian genus Calophyllum (Calophyllaceae): a review on its phytochemistry and pharmacological activities. Natural Product Research, 36(17), 4575-4585. doi:10.1080/14786419.2021.1982936

Zaine NFZ, Halim ANA, Saat R, Jong VYM, Zamakshshari NH. (2024). Antibacterial activity of Garcinia spp. by molecular docking simulations: An overview. Phytochemistry Reviews, 24, 587-2628. doi:10.1007/s11101-024-09997-x

Zaini NNM, Salleh WMNHW, Salihu AS, Sungthong B. (2025). Unlocking the potential of Calophyllum xanthones: A review on antileukemic activity and molecular docking insights. Journal of Science and Mathematics Letters, 13(1), 168-186. doi:10.37134/jsml.vol13.1.15.2025

Zamakshshari NH, Ee GCL, Teh SS, Daud S, Karunakaran T, Safinar I. (2016). Natural product compounds from Calophyllum depressinervosum. Pertanika Journal of Tropical Agricultural Science, 39(2), 249-255.

Zanger UM, Schwab M. (2013). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138(1), 103-141. doi:10.1016/J.PHARMTHERA.2012.12.007

Downloads

Published

2026-01-02

How to Cite

Suffian, Y., Jong , V. Y. M., Halim, A. N. A., Wu, J.-Y. ., Al Madhagi, W. M. ., & Zamakshshari, N. H. . (2026). Isolation of Phytochemicals from Calophyllum nodosum and In Silico Evaluation of Their Drug-Likeness and DNA Gyrase Inhibition Potential. Journal of Science and Mathematics Letters, 14(1), 1-14. https://doi.org/10.37134/jsml.vol14.1.1.2026

Similar Articles

21-27 of 27

You may also start an advanced similarity search for this article.