A Review on Chemical Constituents and Pharmacological Action of the Genus Lindera

Authors

  • Nur Nabilah Zaini Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Wan Mohd Nuzul Hakimi Wan Salleh Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Abubakar Siddiq Salihu Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Salam Ahmed Abed Department of Pharmacognosy, College of Pharmacy, Kerbala University, Kerbala, Iraq

DOI:

https://doi.org/10.37134/jsml.vol12.2.4.2024

Keywords:

keywords:, Lindera, Lauraceae, sesquiterpenes, phytochemicals, pharmacology

Abstract

The genus Lindera consists of approximately 100 species that are widely distributed in tropical and subtropical areas throughout the world. It is represented by widely well-known medicinal and aromatic plants that produce various phytochemicals with potential pharmacological actions. This review attempts to summarize the information on the phytochemicals of Lindera species together with their biological properties. The data and information were collected via an electronic search engine which are Scopus, ScienceDirect, Google Scholar, PubMed, and SciFinder. Sesquiterpenes represent the major chemical compounds that have been characterised in Lindera species, as well as alkaloids, flavonoids, and phenolics. These compounds were shown to possess anticancer, antifibrotic, anti-inflammatory, antitumor, antioxidant, anti-arthritic, cytotoxic, antiallergic, and antihyperlipidemic properties. The outcome of these studies will further support the therapeutic potential of the genus Lindera and provide convincing evidence for its future clinical applications in modern medicine.

Downloads

Download data is not yet available.

Author Biography

Abubakar Siddiq Salihu, Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia

Department of Pure and Industrial Chemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina, Nigeria

References

Adhikari-Devkota A, Dirar A, Kurizaki A, Tsushiro K, Devkota H. (2019). Extraction and isolation of kaempferol glycosides from the leaves and twigs of Lindera neesiana. Separations, 6(1), 10.

Alejo-Armijo A, Altarejos J, Salido S. (2017). Phytochemical and biological activities of laurel tree (Laurus nobilis). Natural Product Communication, 12(5), 1-5.

Azzeme A, Zaman MAK. (2019). Plant toxins: alkaloids and their toxicities. GSC Biological and Pharmaceutical Sciences, 6(2), 21-29.

Cao Y, Xuan B, Peng B, Li C, Chai X, Tu P. (2016). The genus Lindera: a source of structurally diverse molecules having pharmacological significance. Phytochemistry Reviews, 15, 869-906.

Chang SY, Cheng MJ, Peng CF, Chang HS, Chen IS. (2008). Antimycobacterial butanolides from the root of Lindera akoensis. Chemistry & Biodiversity, 5(12), 2690-2698.

Chang YC, Chen CY, Chang FR, Wu YC. (2013). Alkaloids from Lindera glauca. Journal of the Chinese Chemical Society, 48(4), 811-815.

Chang Y, Chen C, Chang F, Wu Y. (2001). Alkaloids from Lindera glauca. Journal of the Chinese Chemical Society, 48(4), 811-815.

Chang YC, Chang FR, Wu YC. (2000). The constituents of Lindera glauca. Journal of the Chinese Chemistry Society, 47(2), 373-380.

Chen H. (2015). Study on the consitituents and antitumer activity of Lindera aggregata (Sims) kosterm. Ph.D. Thesis. Chengdu: Southwest Jiaotong University.

Chen C, Lin C, Huang Y, Ko F, Teng C. (1995). Bioactive constituents from the flower buds and peduncles of Lindera megaphylla. Journal of Natural Products, 58(9), 1423-1425.

Chen F, Miao X, Lin Z, Xiu Y, Shi L, Zhang Q, Liang D, Lin S, He B. (2021). Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against shigella flexneri. Food Control, 130, 108282.

Chen S, Wang L, Zhang W, Wei Y. (2015). Secondary metabolites from the root of Lindera reflexa Hemsl. Fitoterapia, 105, 222-227.

Choi HG, Lee HD, Kim SH, Na MK, Kim JA, Lee SH. (2013). Phenolic glycosides from Lindera obtusiloba and their anti-allergic inflammatory activities. Natural Product Communications, 8(2), 181-182.

Chou GX, Norio N, Ma CM, Wang ZT. (2005). Isoquinoline alkaloids from Lindera aggregata. Chinese Journal of Natural Medicines, 3(5), 272-275.

Chuang C, Wang L, Wong Y, Lin E. (2018). Anti-metastatic effects of isolinderalactone via the inhibition of MMP-2 and up regulation of NM23-H1 expression in human lung cancer A549 cells. Oncology Letters, 15(4), 4460-4696.

Deng Y, Li Y. (2019). Linderalactone inhibits human lung cancer growth by modulating the expression of apoptosis-related proteins, G2/M cell cycle arrest and inhibition of JAK/STAT signalling pathway. Journal of the Balkan Union of Oncology, 24(2), 566-571.

Deng Z, Zhong H, Cui S, Wang F, Xie Y, Yao Q. (2011). Cytotoxic sesquiterpenoids from the fruits of Lindera communis. Fitoterapia, 82(7), 1044-1046.

Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W. (2016). Essential oils’ chemical Characterization and inveatigation of some biological activities: a critical review. Essential Oils: Chemistry and Bioactivity, 3(4), 25.

Duong TH, Beniddir MA,Trung NT, Phan CTD, Vo VG, Nguyen VK, Le QL, Nguyen HD, Pogam PL. (2020). Atypical lindenane-type sesquiterpenes from Lindera myrrha. Molecules, 25(8), 1830.

Feng H, Jiang Y, Cao H, Shu Y, Yang X, Zhu D, Shao M. (2022). Chemical characteristics of the sesquiterpenes and diterpenes from Lauraceae family and their multifaceted health benefits: a review. SSRN Electronic Journal, 8(12), 1-5

Fu YH, Hou YD, Duan YZ, Sun XY, Chen SQ. (2022). Six undescribed derivatives of stilbene isolated from Lindera reflexa Hemsl. and their anti-tumor and anti-inflammatory activities. Fitoterapia, 163, 105331.

Fu Y, Yang J, Chen S, Sun X, Zhao P, Xie Z. (2019). Screening, and identification of the binding position, of xanthine oxidase inhibitors in the roots of Lindera reflexa Hemsl using ultrafiltration LC–MS combined with enzyme blocking. Biomedical Chromatography, 33(9), 1-5.

Gan LS, Yao W, Mo JX, Zhou CX. (2009a). Alkaloids from Lindera aggregata. Natural Product Communications, 4(1), 43-46.

Gan LS, Zheng YL, Mo JX, Liu X, Li XH, Zhou CX. (2009b). Sesquiterpene lactones from the root tubers of Lindera aggregata. Journal of Natural Products, 72(8), 1497-1501.

Gray NE, Magana AA, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A. (2018). Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochemistry Reviews, 17(1), 161-194.

Haque ME, Azam S, Balakrishnan R, Akther M, Kim IS. (2020). Therapeutic potential of Lindera obtusiloba: focus on antioxidative and pharmacological properties. Phytochemical Composition and Its Antioxidant Activities, 9(12), 1765.

Hosseinzadeh M, Hadi AH, Mohamad J, Khalilzadeh MA, Cheahd SC, Fadaeinasab M. (2013). Flavonoids and linderone from Lindera oxyphylla and their bioactivities. Combinatorial Chemistry & High Throughput Screening, 16(2), 160-166.

Huang RL, Chen CC, Huang YL, Ou JC, Hu CP, Chen CF, Chang C. (1998). Anti-tumor effects of d-dicentrine from the root of Lindera megaphylla. Planta Medica, 64(3), 212-215.

Huh G, Park J, Kang J, Jeong T, Kang HC, Baek N. (2014). Flavonoids from Lindera glauca Blume as low-density lipoprotein oxidation inhibitors. Natural Product Research, 28(11), 831-834.

Huh G, Park J, Shrestha S, Lee Y, Ahn E, Kang H, Baek N. (2011). Sterols from Lindera glauca Blume stem wood. Journal of Applied Biological Chemistry, 54(4), 309-312.

Ichino K, Tanaka H, Ito K. (1988). Two novel flavonoids from the leaves of Lindera umbellata Var. lancea and L. umbellata. Tetrahedron, 19(44), 1-5.

Jamaludin R, Kim DS, Salleh LM, Lim SB. (2021). Kinetic study of subcritical water extraction of scopoletin, alizarin and rutin from Morinda citrifolia. Foods, 10(10), 2260.

Joshi SC, Mathela CS. (2012). Antioxidant and antibacterial activities of the leaf essential oil and its constituents furanodienone and curzerenone from Lindera pulcherrima (Nees.) Benth. ex. Hook.f. Pharmacognosy Research, 4(2), 80-84.

Kim JA, Jung YS, Kim MY, Yang SY, Lee S, Kim YH. (2011). Protective effect of components isolated from Lindera erythrocarpa against oxidative stress-induced apoptosis of H9c2 cardiomyocytes. Phytotherapy Research, 25(11), 1612-1617.

Kim JH, Jeon JS, Kim JH, Jung EJ, Lee YJ, Gao EM, Syed AS, Son RH, Kim CY. (2021). Bioassay-guided isolation of two eudesmane sesquiterpenes from Lindera strychnifolia using centrifugal partition chromatography. Molecules, 26(17), 5269.

Kobayashi W, Miyase T, Sano M, Umehara K, Warashina T, Noguchi H. (2002). Prolyl endopeptidase inhibitors from the roots of Lindera strychnifolia F. Vill. Biological & Pharmaceutical Bulletin, 25(8), 1049-1052.

Kumar S, Pandey AK. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 162750.

Kuo PC, Wu YH, Hung HY, Lam SH, Ma GH, Kuo LM, Hwang TL, Kuo HD, Wu TS. (2020). Anti-inflammatory principles from Lindera aggregata. Bioorganic & Medicinal Chemistry Letters, 30(13), 127224.

Kuroda M, Sakurai K, Mimaki Y. (2011). Chemical constituents of the stems and twigs of Lindera umbellata. Journal of Natural Medicines, 65(1), 198-201.

Kwak A, Park JW, Lee S, Lee J, Seo J, Yoon G, Lee M, Choi J, Shim J. (2022). Isolinderalactone sensitizes oxaliplatin-resistance colorectal cancer cells through JNK/p38 MAPK signaling pathways. Phytomedicine, 105, 154383.

Kwon HC, Baek NI, Choi SU, Lee KR. (2000). New cytotoxic butanolides from Lindera obtusiloba Blume. Chemical & Pharmaceutical Bulletin, 48(5), 614-616.

Lee JO, Oak MH, Jung SH, Park DH, Auger C, Kim KR, Lee SW, Schini-Kerth VB. (2011). An ethanolic extract of Lindera obtusiloba stems causes NO-mediated endothelium-dependent relaxations in rat aortic rings and prevents angiotensin II-induced hypertension and endothelial dysfunction in rats. Naunyn-Schmiedeberg's archives of pharmacology, 383(6), 635-645.

Lee B, Ha J, Shin H, Jeong S, Kim J, Lee J, Park J, Kwon H, Jung K, Lee W, Ryu Y, Jeong J, Lee I. (2020). Lindera obtusiloba attenuates oxidative stress and airway inflammation in a murine model of ovalbumin-challenged asthma. Antioxidants, 9(7), 563.

Lei J, Wei GQ, Yuan JJ, Tan KZ, Chen QY, Zhang T, Ma CY, Jiang HZ. (2017). A new phenolic glycoside from Lindera nacusua. Natural Product Research, 31(8), 896-901.

Leong WY, Harrison LJ, Bennett GJ, Kadir AA, Connolly JD. (1998). A dihydrochalcone from Lindera Lucida. Pergamon, 47(5), 891-894.

Li, B., Jeong, G.S., Kang, D.G., Lee, H.S. & Kim, Y.C. (2009). Cytoprotective effects of lindenenyl acetate isolated from Lindera strychnifolia on mouse hippocampal HT22 cells. European Journal of Pharmacology, 614(1-3), 58-65.

Li JB, Ding Y, Li WM. (2002). A new sesquiterpene from the roots of Lindera strychnifolia. Chinese Chemistry Letters, 13(10), 965-967.

Lin CT, Chu FH, Chang ST, Chueh PJ, Su YC, Wu KT, Wang SY. (2007). Secoaggregatalactone-A from Lindera aggregata induces apoptosis in human hepatoma hep G2 cells. Planta Medica, 73(15), 1548-1553.

Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H, Qin W, Wu H, Chen S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type-2 diabetes. Molecules, 21(10), 1374.

Liu Q, Ahn J, Kim S, Lee C, Hwang B, Lee M. (2013). Sesquiterpenes lactones from the roots of Lindera strychnifolia. Phytochemistry, 87, 112-118.

Liu Q, Jo YH, Kim SB, Jin Q, Hwang BY, Lee MK. (2016). Sesquiterpenes from the roots of Lindera strychnifolia with inhibitory effects on nitric oxide production in Raw 264.7 cells. Bioorganis & Medicinal Chemistry Letters, 26(20), 4950-4954.

Liu T, Li WY, Liu XW, Qi CM. (2016). Chemical constituents from the roots of Lindera glauca and their antitumor activity on four different cancer cell lines. Journal of Chinese Medicinal Materials, 39(8), 1789-1792.

Liu X, Fu J, Shen RS, Wu XJ, Yang J, Bai LP, Jiang ZH, Zhu GY. (2021a). Linderanoids A-O, dimeric sesquiterpenoid from the roots of Lindera aggregata (Sims) Kostem. Phytochemistry, 191, 112924.

Liu X, Fu J, Yang J, Huang AC, Li RF, Bai LP, Liu L, Jiang ZH, Zhu GY. (2021b). Linderaggrenolides A-N, oxygen-conjugated sesquiterpenoid dimers from the roots of Lindera aggregata. ACS Omega, 6(8), 5898-5909.

Liu X, Yang J, Fu J, Yao X, Wang J, Liu L. (2019a). Aggreganoids A–F, carbon-bridged sesquiterpenoid dimers and trimers from Lindera aggregata. Organic Letter, 21(14), 5753-5756.

Liu X, Yang J, Yao XJ, Yang X, Fu J, Bai LP, Liu L, Jiang ZH, Zhu GY. (2019b). Linderalides A-D, disesquiterpenoid-geranylbenzofuranone conjugates form Lindera aggregata. The Journal of Organic Chemistry, 84(12), 8242-8247.

Liu Y, Wang H, Wei S, Cai X. (2013). Characterisation of the essential oil from different aerial parts of Lindera chunii Merr. (Lauraceae). Natural Products Research: Formerly Natural Products Letters, 27(19), 1804-1807.

Lu Q, Tong B, Luo Y, Sha L, Chou G, Wang Z, Xia Y, Dai Y. (2013). Norisoboldine suppresses VEGF-induced endothelial cell migration via the cAMP-PKA-NF-κB/Notch1 pathway. PLOS Medicine, 8(12), 1-5.

Luo L, Zhang L, Tian JK, Yang SL. (2009). Chemical constituents from leaves of Lindera aggregata. Chinese Traditional and Herbal Drugs, 40(6), 856-858.

Lv Y, Zou Y, Zhang X, Liu B, Peng X, Chu C. (2023). A revies on the chemical constituents and pharmacological efficacies of Lindera aggregata (Sims) Kosterm. Frontiers in nutrition, 9(16), 1-5.

Lv Q, Qiao S, Xia Y, Shi C, Xia Y, Chou G, Wang Z, Dai Y, Wei Z. (2015). Norisoboldine ameliorates DSS-induced ulcerative colitis in mice through induction of regulatory T-cells in colons. International Immunopharmacology, 29(2), 787-797.

Ma GH, Lin CW, Hung HY, Wang SY, Shieh PC, Wu TS. (2015). New benzenoids from the roots of Lindera aggregata. Natural Product Communications, 10(12), 2131-2133.

Maria S, Christoph S. (2020). Review on natural produts databases: where to find data in 2020. Journal of Cheminformatics, 12(1), 1-5.

Mimura A, Sumioka H, Matsunami K, Otsuka H. (2010). Conjugates of an abscisic acid derivative and phenolic glucosides, and a new sesquiterpene glucoside from Lindera strychnifolia. Journal of Natural Medicines, 64(2), 153-160.

Morimoto S, Nonaka G, Nishioka I, Ezaki N, Takizawa N. (1985). Tannins and related compounds. XXIX. Seven new methyl derivatives of flavan-3-ols and a 1,3-diarylpropan-2-ol from Cinnamomum cassia, C. obtusifolium and Lindera umbellata var. membranacea. Chemical and Pharmaceutical Bulletin, 33(6), 2281-2286.

Nakamura M, Nanami S, Okuno S, Hirota SK, Matsuo A, Suyama Y, Takumoto H, Yoshihara S, Itoh A. (2021). Genetic diversity and structure of apomictin and sexually reproducing Lindera species (Lauraceae) in Japan. Forest, 12(2), 227.

Nayak BS, Raju SS, Chalapathi RAV. (2008). Wound healing activity of Persea americana (avocado) fruit: a preclinical study on rats. Journal of Wound Care, 17(3), 123-126

Nguyen HD, Nguyen HT, Nguyen THT, Sichaem J, Nguyen HH, Nguyen NH, Duong TH. (2023). Myrrhalindenane C, a new eudesmane sesquiterpenoid from Lindera myrrha roots. Records of Natural Products, 17(2), 312-317.

Nii H, Furukawa K, Iwakiri M, Kubota T. (1983). Constituents of the essential oils from Lindera glauca (Sieb. et Zucc.) Blume. Nippon Nogei Kagaku Kaishi, 57(8), 733-741.

Ohno T, Nagatsu A, Nakagawa M, Inoue M, Li YM, Minatoguchi S, Mizukami H, Fujiwara H. (2005). New sesquiterpenes lactones from water extract of the root of Lindera strychnifolia with cytotoxicity against the human small cell lung cancer cell, SBC-3. Tetrahedron Letters, 46, 8657-8660.

Panche A, Diwan A, Chandra S. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, 47.

Peng X, Luo Y, Wang J, Ji T, Yuan L, Kai G. (2020). Integrated analysis of the transcriptome, metabolome and analgesic effect provide insight into potential applications of different parts of Lindera aggregata. Food Research International, 138, 109799.

Phan BH, Seguin E, Tillequin F, Koch M. (1994). Aporphine alkaloids from Lindera myrrha. Phytochemistry, 35(5), 1363-1365.

Qiang Y, Yang ZD, Yang JL, Gao K. (2011). Sesquiterpenoids from the root tubers of Lindera aggregata. Natural Products Chemistry, 77(14), 1610-1616.

Rajina S, Kim WJ, Shim J, Chun K, Joo SH, Shin HK, Lee S, Choi J. (2020). Isolinderalactone induces cell death via mitochondrial superoxide- and STAT3-mediated pathways in human ovarian cancer cells. International Journal of Molecular Sciences, 21(20), 7530.

Ranasinghe P, Pigera S, Premakumara GA, Galappaththy P, Constantine GR, Katulanda P. (2013). Medicinal properties of 'true' cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complementary and Alternative Medicine, 13, 275.

Ruan Q, Jiang S, Zheng X, Tang Y, Yang B, Yi T, Jin J, Cui H, Zhao Z. (2020). Pseudoguaianelactones A–C: Three unusual sesquiterpenoids from Lindera glauca with anti-inflammatory activities by inhibiting the LPS-induced expression of iNOS and COX-2. Chemical Communications, 56(10), 1517-1520.

Ryen AH, Gols T, Julia S, Ammar T, Per-Johan J, Andres B, Ernst U, Sabine G. (2020). Bisabolane sesquiterpenes from the leaves of Lindera benzoin reduce prostaglandin E2 formation in A549 cells. Phytochemistry Letters, 38, 6-11.

Septembre-Malaterre A, Boumendjel A, Seteyen AS, Boina C, Gasque P, Guiraud P, Sélambarom J. (2022). Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine plus: International Journal of Phytotherapy and Phytopharmacology, 2(1), 1-5.

Song MC, Nigussie F, Jeong TS, Lee CY, Regassa F, Markos T, Baek NI. (2006). Phenolic compounds from the roots of Lindera fruticosa. Journal of Natural Products, 69(5), 853-855.

Song MC, Nigussie F, Yang HJ, Kim HH, Kim JY, Chung DK, Baek NI. (2008). Phenolic glycosides from Lindera fruticosa root and their inhibitory activity on osteoclast differentiation. Chemical & Pharmaceutical Bulletin, 56(5), 707-710.

Sumioka H, Harinantenaina L, Matsunami K, Otsuka H, Kawahata M, Yamaguchi K. (2011). Linderolides A-F, eudesme-type sesquiterpenes lactones and linderoline, a germacrene-type sesquiterpene from the roots of Lindera strychnifolia and their inhibitory activity on NO production in Raw 264.7 cells in vitro. Phytochemistry, 72, 2165-2171.

Tsai IL, Hung CH, Duh CY, Chen IS. (2002). Cytotoxic butanolides and secobutanolides from the stem wood of Formosan Lindera communis. Planta Medica, 68(2), 142-145.

Wang F, Gao Y, Zhang L, Bai B, Hu YN, Dong ZJ, Zhai QW, Zhu HJ, Liu JK. (2010). A pair of windmill-shaped enantiomers from Lindera aggregata with activity toward improvement of insulin sensitivity. Organic Letters, 12(14), 3196-3199.

Wei ZF, Lv Q, Xia Y, Yue MF, Shi C, Xia YF, Chou GX, Wang ZT, Dai Y. (2015). Norisoboldine, an anti-arthritis alkaloid isolated from radix linderae, attenuates osteoclast differentiation and inflammatory bone erosion in an aryl hydrocarbon receptor-dependent manner. International Journal of Biological Sciences, 11(9), 1113-1126.

Wei G, Zhang J, Lei J, Ma C, Tong Y, Jiang H. (2016). Chemical constituents from Lindera nacusua (D. Don) Merr. Biochemical Systematics and Ecology, 66, 94-97.

Wen SS, Wang Y, Xu JP, Liu Q, Zhang L, Zheng J, Li L, Zhang N, Liu X, Xu YW, Sun ZL. (2021). Two new sesquiterpenoid lactone derivatives from Lindera aggregata. Natural Products Research, 36(21), 5407-5415.

Wu Y, Zheng Y, Liu X, Han Z, Ren Y, Gan L, Zhou C, Luan L. (2010). Separation and quantitative determination of sesquiterpene lactones in Lindera aggregata (Wu-yao) by ultra-performance LC-MS/MS. Journal of Separation Science, 33(8), 1072-1078.

Xiao M, Cao N, Fan JJ, Yan S, Qiang X. (2011). Studies on flavonoids from the leaves of Lindera aggregata. Journal of Chinese Medicinal Materials, 1, 62-64.

Xu D, Hu MJ, Wang YQ, Cui YL. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123.

Yan R, Hua J. (2014). In vitro antitumor activity of Lindera strychnifolia root essential oil and its active constituent. Journal of Wuhan University (Natural Science Edition), 4, 345-348.

Yan R, Yang Y, Zou G. (2014). Cytotoxic and apoptotic effects of Lindera strychnifolia leaf essential oil. Journal of Essential Oil Research, 26(4), 308-314.

Yang CP, Shie PH, Huang GJ, Chien SC, Kuo YH. (2019). New anti-inflammatory flavonol glycosides from Lindera akoensis Hayata. Molecules, 24(3), 563.

Yang HJ, Kwon EB, Li W. (2020). Linderolide U, a new sesquiterpenes from Lindera aggregata root. Natural Product Research, 36(7), 1914-1918.

Yang JJ, Chen Y, Guo ML, Chou GX. (2020b). Chemical constituents from the roots of Lindera aggregata and their biological activities. Journal of Natural Medicines, 74(2), 441-447.

Yen MC, Shih YC, Hsu YL, Lin ES, Lin YS, Tsai EM, Ho YW, How MF, Kuo PL. (2016). Isolinderalactone enhances the inhibition of SOCS3 on STAT3 activity by decreasing miR-30C in breast cancer. Oncology Reports, 35(3), 1356-1364.

Yen M, Shih Y, Hsu Y, Lin E, Lin Y, Tsai E, Ho Y, Hou M, Kuo P. (2015). Isolinderalactone enhances the inhibition of SOCS3 on STAT3 activity by decreasing Mir-30c in breast cancer. Oncology Reports, 35(3), 1356-1364.

Yu JS, Baek J, Park HB, Moon E, Kim SY, Choi SU, Kim KH. (2016). A new rearranged eudesmane sesquiterpene and bioactive sesquiterpenes from the twigs of Lindera glauca (Sieb. et Zucc.) Blume. Archives of Pharmacal Research, 39, 1628-1634.

Zahari A, Cheah FK, Mohamad J, Sulaiman SN, Litaudon M, Leong KH, Awang K. (2014). Antiplasmodial and antioxidant alkaloids from two Lauraceae species. Planta Medica, 80(7), 599-603.

Zhang C, Sun Q, Chou G, Wang Z. (2003b). Studies on the flavonoids from leaves of Lindera aggregata (Sims) Kosterm. Journal Shenyang Pharm University, 20(4), 342.

Zhang C, Sun Q, Zhao Y, Wang Z. (2001). Studies on flavonoids from leaves of Lindera aggregata (Sims) Kosterm. Chinese Journal of Medicinal Chemistry, 11, 28-30.

Zhang CF, Nakamura N, Tewtrakul S, Hattori M, Sun QS, Wang ZT, Fujiwara T. (2002). Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chemical & Pharmaceutical Bulletin, 50(9), 1195-1200.

Zhang CF, Sun QS, Wang ZT, Masao H, Supinya T. (2003c). Inhibitory activities of tannins extracted from stem of Lindera aggregata against HIV-1 integrase. Chinese Pharmaceutical Journal, 38(12), 911-914.

Zhang C, Nakamura N, Tewtrakul S, Hattori M, Sun Q, Wang Z, Fujiwara T. (2003a). Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chemical & Pharmaceutical Bulletin, 50(9), 1195-1200.

Zhang Q, Fang Y, Lv C, Zhu Y, Xia Y, Wei Z, Dai Y. (2022). Norisoboldine induces the development of Treg cells by promoting fatty acid oxidation‐mediated H3K27 acetylation of Foxp3. The FASEB Journal, 36(4), 1-16.

Zhu B, Hou X, Niu J, Li P, Fang C, Qiu L, Ha D, Zhang Z, Sun J, Li Y, Lin S. (2016) Volatile constituents from the fruits of Lindera glauca (Sieb. et Zucc.) with different maturities. Journal of Essential Oil Bearing Plants, 19(4), 926-935.

Zou W, Gong L, Zhou F, Long Y, Li Z, Xiao Z, Ouyang B, Liu M. (2021). Anti-inflammatory effect of traditional Chinese medicine preparation penyanling on pelvic inflammatory disease. Journal of Ethnopharmacology, 266, 113405.

Downloads

Published

2024-05-15

How to Cite

Zaini, N. N., Wan Salleh, W. M. N. H., Salihu, A. S., & Abed, S. A. (2024). A Review on Chemical Constituents and Pharmacological Action of the Genus Lindera. Journal of Science and Mathematics Letters, 12(2), 50–73. https://doi.org/10.37134/jsml.vol12.2.4.2024

Issue

Section

Articles