Achievement Goals Analysis in the Learning of Calculus Based on Fuzzy Number Conjoint Method

Authors

  • Roselah Osman Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Nazirah Ramli Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Jengka, Pahang, MALAYSIA
  • Nur Azlina Mohd Noor Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Nur’Izzati Najihah Mohamed Thoriq Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Zuraidar Badaruddin Akademi Pengajian Bahasa, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA
  • Nur Aziean Mohd Idris Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA

DOI:

https://doi.org/10.37134/jsml.vol10.1.2.2022

Keywords:

achievement, fuzzy number conjoint method, goals, undergraduates

Abstract

Abstract_RO.PNG

Downloads

Download data is not yet available.

References

Abdullah, L., & Osman, A. (2011). Fuzzy Set Conjoint Model in describing students’ perceptions on Computer Algebra System learning environment. International Journal of Computer Science Issues, 8(2), 92–97.

Ames, C. A. (1990). Motivation: What teachers need to know. Teachers College Record, 91(3), 409–421.

Chen, C. T., Lin, C. T., & Huang, S. F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289–301.

Cross, V. V., & Sudkamp, T. A. (2002). Similarity and compatibility in Fuzzy Set Theory (Vol. 93). Springer.

Chutia, R., & Gogoi, M. K. (2018). Fuzzy risk analysis in poultry farming using a new similarity measure on

generalized fuzzy numbers. Computers & Industrial Engineering, 115, 543-558.

Dom, R. M., Hasan, H., Shahidin, A. M., & Apandi, N. A. (2019). Fuzzy TOPSIS ranking of academic programs’ competitiveness. International Journal of Academic Research in Business and Social Sciences, 9(13), 319–328.

Gao, S., Zhang, Z., & Cao, C. (2009). Multiplication operation on fuzzy numbers. Journal of Software, 4(4), 331-338.

Gopal, K., Salim, N., & Ayub, A.F, M. (2019). Perceptions of learning Mathematics among Lower Secondary Students in Malaysia: Study on students’ engagement using Fuzzy Conjoint Analysis. Malaysian Journal of Mathematical Sciences, 13(2), 165.

Khorshidi, H. A., & Nikfalazar, S. (2017). An improved similarity measure for generalized fuzzy numbers and its application to fuzzy risk analysis. Applied Soft Computing Journal, 52, 478–486.

Lazim, M. A., & Abu Osman, M. T. (2009). Measuring teachers’ beliefs about mathematics: A fuzzy set approach. World Academy of Science, Engineering and Technology 33, 1098–1102.

Liang, Su. (2009). Validating the instrument: Students' perceptions on learning Calculus. NERA Conference Proceedings, 21.

Osman, R., Hilmi, Z.A.G., Ramli,N., & Abdullah, N.H.M.(2020). Metaphors and images of mathematics among secondary school students. Academic Science Journal, 13,1-7.

Sarala, N., & Kavitha, R. (2017). Fuzzy conjoint model in measuring students’ expectation and teachers’ belief on learning mathematics. International Journal of Advanced Trends in Engineering, Science and Technology, 2(2), 6–10.

Sulaiman, N. S., Mohammad, D., Mohd Shariff, J., Sayed Ahmad, S. A.& Abdullah, K. (2017). Extended FTOPSIS with Distance and set Theoretic–Based Similarity Measure. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 387-394.

Sundre, D., Barry, C., Gynnild, V., & Ostgard, E. T. (2012). Motivation for achievement and attitudes toward mathematics instruction in a required Calculus Course at the Norwegian University of Science and Technology. Numeracy, 5(1), 1-18.

Suparlan, A., Shohaimay, F., Haron, N, Zainal Abidin, S., Dasman, A., & Mokhtar@Mother, M. (2019). Evaluation of students’ perceptions of game-based mathematics classroom using fuzzy conjoint analysis. Gading Journal of Science and Technology, 2(2), 54–63.

Osman, R., Ramli, N., Badarudin, Z., Ujang, S., Ayub, H., & Asri, S. N. F. (2019). Fuzzy number conjoint method to analyse students’ perceptions on the learning of calculus. Journal of Physics: Conference Series, 1366, 012117.

Patra, K., & Mondal, S. K. (2015). Fuzzy risk analysis using area and height-based similarity measure on generalized trapezoidal fuzzy numbers and its application. Applied Soft Computing Journal, 28, 276–284.

Ramli, N., & Mohamad, D. (2009). A centroid-based performance evaluation using aggregated fuzzy numbers. Applied Mathematical Sciences, 3(48), 2369-2381.

Wang, W. (1997). New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems, 85(3), 305-309.

Xu, Z., Shang, S., Qian, W., & Shu, W. (2010). A method for fuzzy risk analysis based on the new similarity of trapezoidal fuzzy numbers. Expert Systems with Applications, 37(3), 1920–1927.

Downloads

Published

2022-05-27

How to Cite

Osman, R., Ramli, N., Mohd Noor, N. A., Mohamed Thoriq, N. N., Badaruddin, Z., & Mohd Idris, N. A. (2022). Achievement Goals Analysis in the Learning of Calculus Based on Fuzzy Number Conjoint Method. Journal of Science and Mathematics Letters, 10(1), 10–21. https://doi.org/10.37134/jsml.vol10.1.2.2022