Elastic Properties Measurement of the Multi-layered Materials using the Pulse-Echo Immersion Technique
DOI:
https://doi.org/10.37134/jsml.vol13.1.3.2025Keywords:
Elastic properties, pulse echo immersion technique, multi-layered materialAbstract
Elastic properties measurement is a crucial aspect in understanding and estimating the quality of materials. Even though the multi-layered materials are widely used in various industries, there is still a lack of research has been conducted to measure the elastic properties of each layer within multi-layered materials to monitor the quality of each layer. Hence, this research is performed to determine the elastic properties for each layer within multi-layered materials using the pulse echo immersion technique. Five elastic properties are determined in this study: longitudinal modulus, Young's modulus, shear modulus, bulk modulus, and lame constant. The measurement accuracy was validated using four different thicknesses of three-layered poly(methyl methacrylate) (PMMA) samples and a transducer of 10 MHz center frequency. The findings indicate that the measured values of the elastic properties are consistent within 9.91% compared to the reference values. In conclusion, the elastic properties of each layer within multi-layered materials can be determined using the ultrasonic pulse-echo immersion technique.
Downloads
References
Afifi, H. A. (2003). Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC. Polymer - Plastics Technology and Engineering, 42(2), 193–205. https://doi.org/10.1081/PPT-120017922
Carlson, J. E., Van Deventer, J., Scolan, A., & Carlander, C. (2003). Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems. Proceedings of the IEEE Ultrasonics Symposium, 1(2), 885–888. https://doi.org/10.1109/ultsym.2003.1293541
Chen, C., Xiang, Y., Tang, L., Li, X., Qin, L., & Cao, W. (2020). Ultrasonic pulse-echo technique for the characterization of elastic constants of single domain Pb(Zn1/3Nb2/3)O3–5.5%PbTiO3 single crystals with 3m symmetry. Journal of Materials Science, 55(27), 12737–12746. https://doi.org/10.1007/s10853-020-04919-6
Cristman, D. R. (1967). Dynamic Properties of Poly (Methylmethacrylate) (PMMA) (Plexiglass) (Report No. AD743547). General Motors Technical Center, Michigan.
Donahue, C. M., Remillieux, M. C., Singh, G., Ulrich, T. J., Migliori, R. J., & Saleh, T. A. (2019). Measuring the elastic tensor of a monolithic SiC hollow cylinder with resonant ultrasound spectroscopy. NDT and E International, 101, 29–33. https://doi.org/10.1016/j.ndteint.2018.09.012
Erol, A., Bilici, V. Ö., & Yönetken, A. (2022). Characterization of the elastic modulus of ceramic-metal composites with physical and mechanical properties by ultrasonic technique. Open Chemistry, 20(1), 593–601. https://doi.org/10.1515/chem-2022-0180
Evans, J. A., Sturtevant, B. T., Clausen, B., Vogel, S. C., Balakirev, F. F., Betts, J. B., Capolungo, L., Lebensohn, R. A., & Maiorov, B. (2021). Determining elastic anisotropy of textured polycrystals using resonant ultrasound spectroscopy. Journal of Materials Science, 56(16), 10053–10073. https://doi.org/10.1007/s10853-021-05827-z
Huang, M., Kirkaldy, N., Zhao, Y., Patel, Y., Cegla, F., & Lan, B. (2022). Quantitative characterisation of the layered structure within lithium-ion batteries using ultrasonic resonance. Journal of Energy Storage, 50, 104585. https://doi.org/10.1016/j.est.2022.104585
Jordan, J. L., Rowland, R. L., Greenhall, J., Moss, E. K., Huber, R. C., Willis, E. C., Hrubiak, R., Kenney-Benson, C., Bartram, B., & Sturtevant, B. T. (2021). Elastic properties of polyethylene from high pressure sound speed measurements. Polymer, 212, 123164. https://doi.org/10.1016/j.polymer.2020.123164
Judawisastra, H., Claudia, Sasmita, F., & Agung, T. P. (2019). Elastic modulus determination of thermoplastic polymers with pulse-echo method ultrasonic testing. IOP Conference Series: Materials Science and Engineering, 547(1), 874–879. https://doi.org/10.1088/1757-899X/547/1/012047
Lane, C. (2014). The development of a 2D ultrasonic array inspection for single crystal turbine blades. Switzerland: Springer International Publishing.
Li, Y., Liu, T., Liu, Y., Liu, H., & Wang, Y. (2019). Measurement of elastic constants using halbacharray enhanced EMAT. 2019 IEEE International Ultrasonics Symposium (IUS), 2631–2634. https://doi.org/10.1109/ULTSYM.2019.8925751
Liu, Z., Zhan, J., Fard, M., & Davy, J. L. (2017). Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Applied Acoustics, 121, 25–32. https://doi.org/10.1016/j.apacoust.2017.01.032
Lochab, J., & Singh, V. R. (2004). Acoustic behaviour of plastics for medical applications. Indian Journal of Pure and Applied Physics, 42(8), 595–599.
Mailyan, L. R., Stel’makh, S. A., Shcherban’, E. M., Khalyushev, A. K., Smolyanichenko, A. S., Sysoev, A. K., ... & Cherpakov, A. V. (2021). Investigation of integral and differential characteristics of variatropic structure heavy concretes by ultrasonic methods. Applied Sciences, 11(8), 3591
Mat Daud, A. N., Jaafar, R., Ayop, S. K., & Rohani, M. S. (2018). A computerized system based on an alternative pulse echo immersion technique for acoustic characterization of non-porous solid tissue mimicking materials. Measurement Science and Technology, 29(4), 045902. https://doi.org/10.1088/1361-6501/aaa728
Messineo, M. G., Rus, G., Eliçabe, G. E., & Frontini, G. L. (2016). Layered material characterization using ultrasonic transmission. An inverse estimation methodology. Ultrasonics, 65, 315–328. https://doi.org/10.1016/j.ultras.2015.09.010
Nazihah, M. D., Kadri, S., Yaacob, M. I. H., & Rosly, J. (2013). Computerized acoustical characterization system of medical phantoms. AIP Conference Proceedings, 1528(1), 406–411. https://doi.org/10.1063/1.4803635
Puchi-Cabrera, E. S., Staia, M. H., & Iost, A. (2015). A description of the composite elastic modulus of multilayer coated systems. Thin Solid Films, 583(1), 177–193. https://doi.org/10.1016/j.tsf.2015.02.078
Raišutis, R., Kažys, R., & Mažeika, L. (2008). Application of the ultrasonic pulse-echo technique for quality control of the multi-layered plastic materials. NDT and E International, 41(4), 300–311. https://doi.org/10.1016/j.ndteint.2007.10.008
Rao, X., Zhang, F., Luo, X., & Ding, F. (2019). Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test. Materials Science and Engineering: A, 744, 426–435. https://doi.org/10.1016/j.msea.2018.12.044
Takahashi, V., & Lematre, M. (2021). Elastic Parameters Characterization of Multilayered Structures by Air-Coupled Ultrasonic Transmission and Genetic Algorithm. Ultrasonics, 119, 1–22.
Umiatin, U., Oktaviana, T., Wijaya, E., Riandini, R., & Yusuf, F. (2021). The bone microstructure identification model based on backscatter mode of ultrasound. Spektra: Jurnal Fisika dan Aplikasinya, 6(1), 61-70. https://doi.org/10.21009/SPEKTRA.061.07
Workman, G. L., Kishoni, D. & Moore, P. O. (2007). Nondestructive Testing Handbook (7th ed.). American Society for Nondestructive Testing.
Wu, S. J., Chin, P. C., & Liu, H. (2019). Measurement of elastic properties of brittle materials by ultrasonic and indentation methods. Applied Sciences, 9(10), 2067. https://doi.org/10.3390/app9102067
Xu, K., Ta, D., He, R., Qin, Y. X., & Wang, W. (2014). Axial transmission method for long bone fracture evaluation by ultrasonic guided waves: simulation, phantom and in vitro experiments. Ultrasound in Medicine & Biology, 40(4), 817–827. https://doi.org/10.1016/j.ultrasmedbio.2013.10.019
Yang, X., Verboven, E., Ju, B. F., & Kersemans, M. (2021). Comparative study of ultrasonic techniques for reconstructing the multilayer structure of composites. NDT & E International, 121, 102460.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sri Maiyena, Anis Nazihah Mat Daud, Shahrul Kadri Ayop
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.